Abstract
The expression of a recombinant gene by yeasts seeded into soil samples was directly measured by analyzing transcripts and gene product occurrences in soil extracts. Two yeast species, Saccharomyces cerevisiae WHL292 and Hansenula polymorpha LR9-Apr4, both engineered by a synthetic gene sequence encoding the mammalian peptide aprotinin, produced and secreted this peptide in batch cultures at concentrations of 90 and 64 ng ml-1, respectively. In S. cerevisiae, the aprotinin gene was located on plasmid p707 and expressed constitutively. H. polymorpha carried the gene chromosomally integrated, and its expression was inducible by methanol. To detect aprotinin transcripts, cells were directly lysed in the soil samples and the crude lysates were hybridized to oligo(dT)-coated magnetized polystyrene beads (Dynabeads). After separation and purification in a magnetic field, aprotinin mRNA was detected by reverse transcriptase PCR with aprotinin gene-specific primers. Transcripts from 10 cells g of soil-1 were sufficient for detection. When 10(7) cells of S. cerevisiae were inoculated into soil, aprotinin mRNA was detectable during the first 4 days. Addition of methanol and a combined nutrient solution was necessary to induce aprotinin gene expression of H. polymorpha in soil. Aprotinin could be detected directly in soil extracts by an indirect enzyme-linked immunosorbent assay with monoclonal aprotinin-specific antibodies. The detection threshold was 45 pg g of soil-1. In presterilized soil inoculated with S. cerevisiae (10(6) CFU g-1), aprotinin accumulated during the first 10 days to 12 ng g of soil-1 and then remained constant.(ABSTRACT TRUNCATED AT 250 WORDS)
Full Text
The Full Text of this article is available as a PDF (838.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alard P., Lantz O., Sebagh M., Calvo C. F., Weill D., Chavanel G., Senik A., Charpentier B. A versatile ELISA-PCR assay for mRNA quantitation from a few cells. Biotechniques. 1993 Oct;15(4):730–737. [PubMed] [Google Scholar]
- Brake A. J., Merryweather J. P., Coit D. G., Heberlein U. A., Masiarz F. R., Mullenbach G. T., Urdea M. S., Valenzuela P., Barr P. J. Alpha-factor-directed synthesis and secretion of mature foreign proteins in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1984 Aug;81(15):4642–4646. doi: 10.1073/pnas.81.15.4642. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cattaneo R. Different types of messenger RNA editing. Annu Rev Genet. 1991;25:71–88. doi: 10.1146/annurev.ge.25.120191.000443. [DOI] [PubMed] [Google Scholar]
- Das R. C., Shultz J. L., Lehman D. J. Alpha-factor leader sequence-directed transport of Escherichia coli beta-galactosidase in the secretory pathway of Saccharomyces cerevisiae. Mol Gen Genet. 1989 Aug;218(2):240–248. doi: 10.1007/BF00331274. [DOI] [PubMed] [Google Scholar]
- Fritz H., Wunderer G. Biochemistry and applications of aprotinin, the kallikrein inhibitor from bovine organs. Arzneimittelforschung. 1983;33(4):479–494. [PubMed] [Google Scholar]
- Fujimura H., Sakuma Y., Amann E. Survival of genetically-engineered and wild-type strains of the yeast Saccharomyces cerevisiae under simulated environmental conditions: a contribution on risk assessment. J Appl Bacteriol. 1994 Dec;77(6):689–693. doi: 10.1111/j.1365-2672.1994.tb02820.x. [DOI] [PubMed] [Google Scholar]
- Gellissen G., Janowicz Z. A., Weydemann U., Melber K., Strasser A. W., Hollenberg C. P. High-level expression of foreign genes in Hansenula polymorpha. Biotechnol Adv. 1992;10(2):179–189. doi: 10.1016/0734-9750(92)90002-q. [DOI] [PubMed] [Google Scholar]
- Gellissen G., Melber K., Janowicz Z. A., Dahlems U. M., Weydemann U., Piontek M., Strasser A. W., Hollenberg C. P. Heterologous protein production in yeast. Antonie Van Leeuwenhoek. 1992 Aug;62(1-2):79–93. doi: 10.1007/BF00584464. [DOI] [PubMed] [Google Scholar]
- Goh K. S., Hernandez J., Powell S. J., Garretson C., Troiano J., Ray M., Greene C. D. Enzyme immunoassay for the determination of atrazine residues in soil. Bull Environ Contam Toxicol. 1991 Jan;46(1):30–36. doi: 10.1007/BF01688251. [DOI] [PubMed] [Google Scholar]
- Hall J. C., Wilson L. K., Chapman R. A. An immunoassay for metolachlor detection in river water and soil. J Environ Sci Health B. 1992 Oct;27(5):523–544. doi: 10.1080/03601239209372799. [DOI] [PubMed] [Google Scholar]
- Holben William E., Jansson Janet K., Chelm Barry K., Tiedje James M. DNA Probe Method for the Detection of Specific Microorganisms in the Soil Bacterial Community. Appl Environ Microbiol. 1988 Mar;54(3):703–711. doi: 10.1128/aem.54.3.703-711.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Janowicz Z. A., Eckart M. R., Drewke C., Roggenkamp R. O., Hollenberg C. P., Maat J., Ledeboer A. M., Visser C., Verrips C. T. Cloning and characterization of the DAS gene encoding the major methanol assimilatory enzyme from the methylotrophic yeast Hansenula polymorpha. Nucleic Acids Res. 1985 May 10;13(9):3043–3062. doi: 10.1093/nar/13.9.3043. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jeffrey W. H., Nazaret S., Von Haven R. Improved Method for Recovery of mRNA from Aquatic Samples and Its Application to Detection of mer Expression. Appl Environ Microbiol. 1994 Jun;60(6):1814–1821. doi: 10.1128/aem.60.6.1814-1821.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ledeboer A. M., Edens L., Maat J., Visser C., Bos J. W., Verrips C. T., Janowicz Z., Eckart M., Roggenkamp R., Hollenberg C. P. Molecular cloning and characterization of a gene coding for methanol oxidase in Hansenula polymorpha. Nucleic Acids Res. 1985 May 10;13(9):3063–3082. doi: 10.1093/nar/13.9.3063. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liang L. N., Sinclair J. L., Mallory L. M., Alexander M. Fate in model ecosystems of microbial species of potential use in genetic engineering. Appl Environ Microbiol. 1982 Sep;44(3):708–714. doi: 10.1128/aem.44.3.708-714.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nakayama H., Yokoi H., Fujita J. Quantification of mRNA by non-radioactive RT-PCR and CCD imaging system. Nucleic Acids Res. 1992 Sep 25;20(18):4939–4939. doi: 10.1093/nar/20.18.4939. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nazaret S., Jeffrey W. H., Saouter E., Von Haven R., Barkay T. merA gene expression in aquatic environments measured by mRNA production and Hg(II) volatilization. Appl Environ Microbiol. 1994 Nov;60(11):4059–4065. doi: 10.1128/aem.60.11.4059-4065.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ogunseitan O. A., Delgado I. L., Tsai Y. L., Olson B. H. Effect of 2-hydroxybenzoate on the maintenance of naphthalene-degrading pseudomonads in seeded and unseeded soil. Appl Environ Microbiol. 1991 Oct;57(10):2873–2879. doi: 10.1128/aem.57.10.2873-2879.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pichard S. L., Paul J. H. Gene expression per gene dose, a specific measure of gene expression in aquatic microorganisms. Appl Environ Microbiol. 1993 Feb;59(2):451–457. doi: 10.1128/aem.59.2.451-457.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pichard Scott L., Paul John H. Detection of Gene Expression in Genetically Engineered Microorganisms and Natural Phytoplankton Populations in the Marine Environment by mRNA Analysis. Appl Environ Microbiol. 1991 Jun;57(6):1721–1727. doi: 10.1128/aem.57.6.1721-1727.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sherman F. Getting started with yeast. Methods Enzymol. 1991;194:3–21. doi: 10.1016/0076-6879(91)94004-v. [DOI] [PubMed] [Google Scholar]
- Steffan R. J., Atlas R. M. DNA amplification to enhance detection of genetically engineered bacteria in environmental samples. Appl Environ Microbiol. 1988 Sep;54(9):2185–2191. doi: 10.1128/aem.54.9.2185-2191.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tebbe C. C., Vahjen W. Interference of humic acids and DNA extracted directly from soil in detection and transformation of recombinant DNA from bacteria and a yeast. Appl Environ Microbiol. 1993 Aug;59(8):2657–2665. doi: 10.1128/aem.59.8.2657-2665.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tsai Y. L., Park M. J., Olson B. H. Rapid method for direct extraction of mRNA from seeded soils. Appl Environ Microbiol. 1991 Mar;57(3):765–768. doi: 10.1128/aem.57.3.765-768.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Waters M. G., Evans E. A., Blobel G. Prepro-alpha-factor has a cleavable signal sequence. J Biol Chem. 1988 May 5;263(13):6209–6214. [PubMed] [Google Scholar]