Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1995 Dec;61(12):4396–4402. doi: 10.1128/aem.61.12.4396-4402.1995

Degradation and utilization of xylan by the ruminal bacteria Butyrivibrio fibrisolvens and Selenomonas ruminantium.

M A Cotta 1, R L Zeltwanger 1
PMCID: PMC167747  PMID: 8534103

Abstract

The cross-feeding of xyland hydrolysis products between the xylanolytic bacterium Butyrivibrio fibrisolvens H17c and the xylooligosaccharide-fermenting bacterium Selenomonas ruminantium GA192 was investigated. Cultures were grown anaerobically in complex medium containing oat spelt xylan, and the digestion of xylan and the generation and subsequent utilization of xylooligosaccharide intermediates were monitored over time. Monocultures of B. fibrisolvens rapidly degraded oat spelt xylan, and a pool of extracellular degradation intermediates composed of low-molecular-weight xylooligosaccharides (xylobiose through xylopentaose and larger, unidentified oligomers) accumulated in these cultures. The ability of S. ruminantium to utilize the products of xylanolysis by B. fibrisolvens was demonstrated by its ability to grow on xylan that had first been digested by the extracellular xylanolytic enzymes of B. fibrisolvens. Although enzymatic hydrolysis converted the xylan to soluble products, this alone was not sufficient to assure complete utilization by S. ruminantium, and considerable quantities of oligosaccharides remained following growth. Stable xylan-utilizing cocultures of S. ruminantium and B. fibrisolvens were established, and the utilization of xylan was monitored. Despite the presence of an oligosaccharide-fermenting organism, accumulations of acid-alcohol soluble products were still noted; however, the composition of carbohydrates present in these cultures differed from that seen when B. fibrisolvens was cultivated alone. Residual carbohydrates present at various times during growth were of higher average degree of polymerization in cocultures than in cultures of B. fibrisolvens alone. Structural characterization of these residual products may help define the limitations on the assimilation of xylooligosaccharides by ruminal bacteria.

Full Text

The Full Text of this article is available as a PDF (222.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BRYANT M. P., SMALL N., BOUMA C., CHU H. Bacteroides ruminicola n. sp. and Succinimonas amylolytica; the new genus and species; species of succinic acid-producing anaerobic bacteria of the bovine rumen. J Bacteriol. 1958 Jul;76(1):15–23. doi: 10.1128/jb.76.1.15-23.1958. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BRYANT M. P. The characteristics of strains of Selenomonas isolated from bovine rumen contents. J Bacteriol. 1956 Aug;72(2):162–167. doi: 10.1128/jb.72.2.162-167.1956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Coen J. A., Dehority B. A. Degradation and utilization of hemicellulose from intact forages by pure cultures of rumen bacteria. Appl Microbiol. 1970 Sep;20(3):362–368. doi: 10.1128/am.20.3.362-368.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cotta M. A. Interaction of ruminal bacteria in the production and utilization of maltooligosaccharides from starch. Appl Environ Microbiol. 1992 Jan;58(1):48–54. doi: 10.1128/aem.58.1.48-54.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cotta M. A. Utilization of nucleic acids by Selenomonas ruminantium and other ruminal bacteria. Appl Environ Microbiol. 1990 Dec;56(12):3867–3870. doi: 10.1128/aem.56.12.3867-3870.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cotta M. A. Utilization of xylooligosaccharides by selected ruminal bacteria. Appl Environ Microbiol. 1993 Nov;59(11):3557–3563. doi: 10.1128/aem.59.11.3557-3563.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. DEHORITY B. A. DEGRADATION AND UTILIZATION OF ISOLATED HEMICELLULOSE BY PURE CULTURES OF CELLULOLYTIC RUMEN BACTERIA. J Bacteriol. 1965 Jun;89:1515–1520. doi: 10.1128/jb.89.6.1515-1520.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dehority B. A. Characterization of several bovine rumen bacteria isolated with a xylan medium. J Bacteriol. 1966 May;91(5):1724–1729. doi: 10.1128/jb.91.5.1724-1729.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dehority B. A. Hemicellulose degradation by rumen bacteria. Fed Proc. 1973 Jul;32(7):1819–1825. [PubMed] [Google Scholar]
  10. Dehority B. A. Rate of isolated hemicellulose degradation and utilization by pure cultures of rumen bacteria. Appl Microbiol. 1967 Sep;15(5):987–993. doi: 10.1128/am.15.5.987-993.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hespell R. B. Biotechnology and modifications of the rumen microbial ecosystem. Proc Nutr Soc. 1987 Sep;46(3):407–413. doi: 10.1079/pns19870055. [DOI] [PubMed] [Google Scholar]
  12. Hespell R. B., Cotta M. A. Degradation and utilization by Butyrivibrio fibrisolvens H17c of xylans with different chemical and physical properties. Appl Environ Microbiol. 1995 Aug;61(8):3042–3050. doi: 10.1128/aem.61.8.3042-3050.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hespell R. B., Whitehead T. R. Physiology and genetics of xylan degradation by gastrointestinal tract bacteria. J Dairy Sci. 1990 Oct;73(10):3013–3022. doi: 10.3168/jds.S0022-0302(90)78988-6. [DOI] [PubMed] [Google Scholar]
  14. Hespell R. B., Wolf R., Bothast R. J. Fermentation of xylans by Butyrivibrio fibrisolvens and other ruminal bacteria. Appl Environ Microbiol. 1987 Dec;53(12):2849–2853. doi: 10.1128/aem.53.12.2849-2853.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Joblin K. N., Naylor G. E., Williams A. G. Effect of Methanobrevibacter smithii on Xylanolytic Activity of Anaerobic Ruminal Fungi. Appl Environ Microbiol. 1990 Aug;56(8):2287–2295. doi: 10.1128/aem.56.8.2287-2295.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Russell J. B., Baldwin R. L. Substrate preferences in rumen bacteria: evidence of catabolite regulatory mechanisms. Appl Environ Microbiol. 1978 Aug;36(2):319–329. doi: 10.1128/aem.36.2.319-329.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Russell J. B. Fermentation of cellodextrins by cellulolytic and noncellulolytic rumen bacteria. Appl Environ Microbiol. 1985 Mar;49(3):572–576. doi: 10.1128/aem.49.3.572-576.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Strobel H. J., Dawson K. A. Xylose and arabinose utilization by the rumen bacterium Butyrivibrio fibrisolvens. FEMS Microbiol Lett. 1993 Nov 1;113(3):291–296. doi: 10.1111/j.1574-6968.1993.tb06529.x. [DOI] [PubMed] [Google Scholar]
  19. Strobel H. J. Evidence for catabolite inhibition in regulation of pentose utilization and transport in the ruminal bacterium Selenomonas ruminantium. Appl Environ Microbiol. 1993 Jan;59(1):40–46. doi: 10.1128/aem.59.1.40-46.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Strobel H. J. Pentose transport by the ruminal bacterium Butyrivibrio fibrisolvens. FEMS Microbiol Lett. 1994 Oct 1;122(3):217–222. doi: 10.1111/j.1574-6968.1994.tb07170.x. [DOI] [PubMed] [Google Scholar]
  21. Teunissen M. J., Kets E. P., Op den Camp H. J., Huis in't Veld J. H., Vogels G. D. Effect of coculture of anaerobic fungi isolated from ruminants and non-ruminants with methanogenic bacteria on cellulolytic and xylanolytic enzyme activities. Arch Microbiol. 1992;157(2):176–182. doi: 10.1007/BF00245287. [DOI] [PubMed] [Google Scholar]
  22. Wells J. E., Russell J. B., Shi Y., Weimer P. J. Cellodextrin efflux by the cellulolytic ruminal bacterium Fibrobacter succinogenes and its potential role in the growth of nonadherent bacteria. Appl Environ Microbiol. 1995 May;61(5):1757–1762. doi: 10.1128/aem.61.5.1757-1762.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES