Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1996 Jan;62(1):115–120. doi: 10.1128/aem.62.1.115-120.1996

Potential virulence of viable but nonculturable Shigella dysenteriae type 1.

I Rahman 1, M Shahamat 1, M A Chowdhury 1, R R Colwell 1
PMCID: PMC167780  PMID: 8572688

Abstract

We examined a virulent strain of Shigella dysenteriae type 1 after induction into the viable but nonculturable (VBNC) state for its ability to (i) maintain the Shiga toxin (stx) gene; (ii) maintain biologically active Shiga toxin (ShT); and (iii) adhere to intestinal epithelial cells (Henle 407 cell line). PCR was used to amplify the stx gene from VBNC cells of S. dysenteriae type 1, thereby establishing its presence even when cells are in the VBNC state. VBNC S. dysenteriae type 1 ShT was monitored by the enzyme-linked immunosorbent assay with mouse monoclonal antibodies against the B subunit of ShT and affinity-purified rabbit polyclonal antibodies against ShT. We used the Henle 407 cell line to study the adhesive property of VBNC S. dysenteriae type 1 cells in a series of tissue culture experiments. Results showed that VBNC S. dysenteriae type 1 not only maintained the stx gene and biologically active ShT but also remained capable of adhering to Henle 407 cells. However, S. dysenteriae type 1 cells lost the ability to invade Henle 407 cells after entering the VBNC state. From results of the study, we conclude that VBNC cells of S. dysenteriae type 1 retain several virulence factors and remain potentially virulent, posing a public health problem.

Full Text

The Full Text of this article is available as a PDF (394.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brauns L. A., Hudson M. C., Oliver J. D. Use of the polymerase chain reaction in detection of culturable and nonculturable Vibrio vulnificus cells. Appl Environ Microbiol. 1991 Sep;57(9):2651–2655. doi: 10.1128/aem.57.9.2651-2655.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Gentry M. K., Dalrymple J. M. Quantitative microtiter cytotoxicity assay for Shigella toxin. J Clin Microbiol. 1980 Sep;12(3):361–366. doi: 10.1128/jcm.12.3.361-366.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Hale T. L. Genetic basis of virulence in Shigella species. Microbiol Rev. 1991 Jun;55(2):206–224. doi: 10.1128/mr.55.2.206-224.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hobbie J. E., Daley R. J., Jasper S. Use of nuclepore filters for counting bacteria by fluorescence microscopy. Appl Environ Microbiol. 1977 May;33(5):1225–1228. doi: 10.1128/aem.33.5.1225-1228.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Islam M. S., Hasan M. K., Miah M. A., Sur G. C., Felsenstein A., Venkatesan M., Sack R. B., Albert M. J. Use of the polymerase chain reaction and fluorescent-antibody methods for detecting viable but nonculturable Shigella dysenteriae type 1 in laboratory microcosms. Appl Environ Microbiol. 1993 Feb;59(2):536–540. doi: 10.1128/aem.59.2.536-540.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Jackson M. P. Detection of Shiga toxin-producing Shigella dysenteriae type 1 and Escherichia coli by using polymerase chain reaction with incorporation of digoxigenin-11-dUTP. J Clin Microbiol. 1991 Sep;29(9):1910–1914. doi: 10.1128/jcm.29.9.1910-1914.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kogure K., Simidu U., Taga N. A tentative direct microscopic method for counting living marine bacteria. Can J Microbiol. 1979 Mar;25(3):415–420. doi: 10.1139/m79-063. [DOI] [PubMed] [Google Scholar]
  8. Lee K., Ruby E. G. Symbiotic Role of the Viable but Nonculturable State of Vibrio fischeri in Hawaiian Coastal Seawater. Appl Environ Microbiol. 1995 Jan;61(1):278–283. doi: 10.1128/aem.61.1.278-283.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Linder K., Oliver J. D. Membrane fatty acid and virulence changes in the viable but nonculturable state of Vibrio vulnificus. Appl Environ Microbiol. 1989 Nov;55(11):2837–2842. doi: 10.1128/aem.55.11.2837-2842.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Medema G. J., Schets F. M., van de Giessen A. W., Havelaar A. H. Lack of colonization of 1 day old chicks by viable, non-culturable Campylobacter jejuni. J Appl Bacteriol. 1992 Jun;72(6):512–516. doi: 10.1111/j.1365-2672.1992.tb01868.x. [DOI] [PubMed] [Google Scholar]
  11. Morgan J. A., Rhodes G., Pickup R. W. Survival of nonculturable Aeromonas salmonicida in lake water. Appl Environ Microbiol. 1993 Mar;59(3):874–880. doi: 10.1128/aem.59.3.874-880.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Nilsson L., Oliver J. D., Kjelleberg S. Resuscitation of Vibrio vulnificus from the viable but nonculturable state. J Bacteriol. 1991 Aug;173(16):5054–5059. doi: 10.1128/jb.173.16.5054-5059.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. O'Neill K. R., Jones S. H., Grimes D. J. Seasonal incidence of Vibrio vulnificus in the Great Bay estuary of New Hampshire and Maine. Appl Environ Microbiol. 1992 Oct;58(10):3257–3262. doi: 10.1128/aem.58.10.3257-3262.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Qadri F., Haq S., Hossain S. A., Ciznar I., Tzipori S. The association of haemagglutination and adhesion with lipopolysaccharide of Shigella dysenteriae serotype 1. J Med Microbiol. 1991 May;34(5):259–264. doi: 10.1099/00222615-34-5-259. [DOI] [PubMed] [Google Scholar]
  15. Rahman I., Shahamat M., Kirchman P. A., Russek-Cohen E., Colwell R. R. Methionine uptake and cytopathogenicity of viable but nonculturable Shigella dysenteriae type 1. Appl Environ Microbiol. 1994 Oct;60(10):3573–3578. doi: 10.1128/aem.60.10.3573-3578.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Rollins D. M., Colwell R. R. Viable but nonculturable stage of Campylobacter jejuni and its role in survival in the natural aquatic environment. Appl Environ Microbiol. 1986 Sep;52(3):531–538. doi: 10.1128/aem.52.3.531-538.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Roszak D. B., Colwell R. R. Survival strategies of bacteria in the natural environment. Microbiol Rev. 1987 Sep;51(3):365–379. doi: 10.1128/mr.51.3.365-379.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Shahamat M., Mai U., Paszko-Kolva C., Kessel M., Colwell R. R. Use of autoradiography to assess viability of Helicobacter pylori in water. Appl Environ Microbiol. 1993 Apr;59(4):1231–1235. doi: 10.1128/aem.59.4.1231-1235.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Siegele D. A., Kolter R. Life after log. J Bacteriol. 1992 Jan;174(2):345–348. doi: 10.1128/jb.174.2.345-348.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Turpin P. E., Maycroft K. A., Rowlands C. L., Wellington E. M. Viable but non-culturable salmonellas in soil. J Appl Bacteriol. 1993 Apr;74(4):421–427. doi: 10.1111/j.1365-2672.1993.tb05149.x. [DOI] [PubMed] [Google Scholar]
  21. Weichart D., Oliver J. D., Kjelleberg S. Low temperature induced non-culturability and killing of Vibrio vulnificus. FEMS Microbiol Lett. 1992 Dec 15;100(1-3):205–210. doi: 10.1111/j.1574-6968.1992.tb14041.x. [DOI] [PubMed] [Google Scholar]
  22. Zimmermann R., Iturriaga R., Becker-Birck J. Simultaneous determination of the total number of aquatic bacteria and the number thereof involved in respiration. Appl Environ Microbiol. 1978 Dec;36(6):926–935. doi: 10.1128/aem.36.6.926-935.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES