Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1996 Jan;62(1):168–173. doi: 10.1128/aem.62.1.168-173.1996

Purification and characterization of two arabinofuranosidases from solid-state cultures of the fungus Penicillium capsulatum.

E X Filho 1, J Puls 1, M P Coughlan 1
PMCID: PMC167784  PMID: 8572693

Abstract

Two arabinofuranosidases, termed Ara I and Ara II, from solid-state cultures of Penicillium capsulatum were purified to apparent homogeneity as judged by electrophoresis and isoelectric focusing. Each enzyme is a single subunit glycoprotein, and they have M(r)s and pIs of 64,500 and 4.15 (Ara I) and 62,700 and 4.54 (Ara II), respectively. Ara I is most active at pH 4.0 and 60 degrees C, while Ara II exhibits optimal activity at pH 4.0 and 55 degrees C. Ara I is the more thermostable, with its half-life at 70 degrees C and pH 4.0 being 17.5 min. By contrast, the half-life of Ara II is only 9 min at 60 degrees C and pH 4.0. Ara I has the lower Km and higher catalytic constant values with p-nitrophenyl-alpha-L-arabinofuranoside being used as the substrate. Arabinose, a competitive inhibitor (Ki, 16.4 mM) of Ara II, has no effect on Ara I activity at concentrations of up to 40 mM. Each enzyme catalyzes the release of arabinose from pectin, araban, and certain arabinose-containing xylans. The last activity is enhanced by pretreatment of the relevant substrates with xylanase, ferulic acid esterase, or combinations of these enzymes. Thus, arabinoxylooligosaccharides in which arabinose is the sole side chain substituent appear to be the preferred substrates. On the basis of the evidence cited above, each enzyme has been classified as an alpha-L-arabinofuranoside arabinofuranohydrolase (EC 3.2.1.79).

Full Text

The Full Text of this article is available as a PDF (231.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bachmann S. L., McCarthy A. J. Purification and Cooperative Activity of Enzymes Constituting the Xylan-Degrading System of Thermomonospora fusca. Appl Environ Microbiol. 1991 Aug;57(8):2121–2130. doi: 10.1128/aem.57.8.2121-2130.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cleland W. W. The statistical analysis of enzyme kinetic data. Adv Enzymol Relat Areas Mol Biol. 1967;29:1–32. doi: 10.1002/9780470122747.ch1. [DOI] [PubMed] [Google Scholar]
  3. Ferreira-Filho E. X. The xylan-degrading enzyme system. Braz J Med Biol Res. 1994 May;27(5):1093–1109. [PubMed] [Google Scholar]
  4. Gilead S., Shoham Y. Purification and characterization of alpha-L-arabinofuranosidase from Bacillus stearothermophilus T-6. Appl Environ Microbiol. 1995 Jan;61(1):170–174. doi: 10.1128/aem.61.1.170-174.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Greve L. C., Labavitch J. M., Hungate R. E. alpha-L-arabinofuranosidase from Ruminococcus albus 8: purification and possible role in hydrolysis of alfalfa cell wall. Appl Environ Microbiol. 1984 May;47(5):1135–1140. doi: 10.1128/aem.47.5.1135-1140.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kaji A., Saheki T. Endo-arabinanase from Bacillus subtilis F-11. Biochim Biophys Acta. 1975 Dec 18;410(2):354–360. doi: 10.1016/0005-2744(75)90237-5. [DOI] [PubMed] [Google Scholar]
  7. Kaji A., Tagawa K. Purification, crystallization and amino acid composition of alpha-L-arabinofuranosidase from Aspergillus niger. Biochim Biophys Acta. 1970 Jun 23;207(3):456–464. doi: 10.1016/s0005-2795(70)80008-3. [DOI] [PubMed] [Google Scholar]
  8. Kaji A., Talawa K., Ichimi T. Properties of purified alpha-L-arabinofuranosidase from Aspergillus niger. Biochim Biophys Acta. 1969 Jan 7;171(1):186–188. doi: 10.1016/0005-2744(69)90118-1. [DOI] [PubMed] [Google Scholar]
  9. Kaji A., Yoshihara O. Properties of purified -L-arabinofuranosidase from Corticium rolfsii. Biochim Biophys Acta. 1971 Nov 13;250(2):367–371. doi: 10.1016/0005-2744(71)90193-8. [DOI] [PubMed] [Google Scholar]
  10. Kaneko S., Sano M., Kusakabe I. Purification and some properties of alpha-L-arabinofuranosidase from Bacillus subtilis 3-6. Appl Environ Microbiol. 1994 Sep;60(9):3425–3428. doi: 10.1128/aem.60.9.3425-3428.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kellett L. E., Poole D. M., Ferreira L. M., Durrant A. J., Hazlewood G. P., Gilbert H. J. Xylanase B and an arabinofuranosidase from Pseudomonas fluorescens subsp. cellulosa contain identical cellulose-binding domains and are encoded by adjacent genes. Biochem J. 1990 Dec 1;272(2):369–376. doi: 10.1042/bj2720369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  13. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  14. Manin C., Shareek F., Morosoli R., Kluepfel D. Purification and characterization of an alpha-L-arabinofuranosidase from Streptomyces lividans 66 and DNA sequence of the gene (abfA). Biochem J. 1994 Sep 1;302(Pt 2):443–449. doi: 10.1042/bj3020443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. McGUCKIN W. F., McKENZIE B. F. An improved periodic acid fuchsin sulfite staining method for evaluation of glycoproteins. Clin Chem. 1958 Dec;4(6):476–483. [PubMed] [Google Scholar]
  16. Tanaka M., Uchida T. Purification and properties of alpha-l-arabinofuranosidase from plant Scopolia japonica calluses. Biochim Biophys Acta. 1978 Feb 10;522(2):531–540. doi: 10.1016/0005-2744(78)90085-2. [DOI] [PubMed] [Google Scholar]
  17. Utt E. A., Eddy C. K., Keshav K. F., Ingram L. O. Sequencing and expression of the Butyrivibrio fibrisolvens xylB gene encoding a novel bifunctional protein with beta-D-xylosidase and alpha-L-arabinofuranosidase activities. Appl Environ Microbiol. 1991 Apr;57(4):1227–1234. doi: 10.1128/aem.57.4.1227-1234.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. WILKINSON G. N. Statistical estimations in enzyme kinetics. Biochem J. 1961 Aug;80:324–332. doi: 10.1042/bj0800324. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Weinstein L., Albersheim P. Structure of Plant Cell Walls: IX. Purification and Partial Characterization of a Wall-degrading Endo-Arabanase and an Arabinosidase from Bacillus subtilis. Plant Physiol. 1979 Mar;63(3):425–432. doi: 10.1104/pp.63.3.425. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES