Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1996 Jan;62(1):221–229. doi: 10.1128/aem.62.1.221-229.1996

Isolation, DNA sequence analysis, and mutagenesis of a proline dehydrogenase gene (putA) from Bradyrhizobium japonicum.

P F Straub 1, P H Reynolds 1, S Althomsons 1, V Mett 1, Y Zhu 1, G Shearer 1, D H Kohl 1
PMCID: PMC167790  PMID: 8572700

Abstract

We report here the cloning and sequencing of the gene for proline dehydrogenase (putA) of Bradyrhizobium japonicum. An open reading frame coding for 1,016 amino acids was identified. The B. japonicum gene codes for a bifunctional protein with proline dehydrogenase and pyrroline-5-carboxylate (P5C) dehydrogenase activities, as it does in Escherichia coli and Salmonella typhimurium. Comparison of the sequences of these proteins with other proline and P5C dehydrogenase sequences identified proline dehydrogenase and P5C dehydrogenase catalytic domains. Within the proline dehydrogenation domain, several areas of high identity were observed between B. japonicum, E. coli, S. typhimurium, Saccharomyces cerevisiae put1, and Drosophila melanogaster slgA. Within the P5C dehydrogenase domain, several areas of high identity were observed between B. japonicum, E. coli, S. typhimurium, Bacillus subtilis ipa76d, and S. cerevisiae put2. A consensus catalytic site for semialdehyde dehydrogenase was observed in the P5C dehydrogenase domain. This suggests that the substrate for this domain may be the open-chain gamma-glutamylsemialdehyde, not its cyclized form, P5C. Unlike the gene isolated from E. coli, S. typhimurium, and K. pneumoniae, the B. japonicum putA gene does not appear to be part of an operon with the proline porter gene (putP). Additionally, the B. japonicum gene lacks the putative C-terminal regulatory domain present in the E. coli and S. typhimurium genes. The gene was disrupted by insertion of antibiotic resistance gene cassettes, which were then recombined into the bacterial chromosome. Symbiotically active mutant strains that were devoid of putA activity were isolated. With this proline dehydrogenase clone, we will test the hypothesis that putA in symbiotic nitrogen-fixing B. japonicum bacteroids is transcriptionally regulated by drought and other stresses.

Full Text

The Full Text of this article is available as a PDF (450.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams T. H., McClung C. R., Chelm B. K. Physical organization of the Bradyrhizobium japonicum nitrogenase gene region. J Bacteriol. 1984 Sep;159(3):857–862. doi: 10.1128/jb.159.3.857-862.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Allen S. W., Senti-Willis A., Maloy S. R. DNA sequence of the putA gene from Salmonella typhimurium: a bifunctional membrane-associated dehydrogenase that binds DNA. Nucleic Acids Res. 1993 Apr 11;21(7):1676–1676. doi: 10.1093/nar/21.7.1676. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bairoch A. PROSITE: a dictionary of sites and patterns in proteins. Nucleic Acids Res. 1992 May 11;20 (Suppl):2013–2018. doi: 10.1093/nar/20.suppl.2013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Baker P. J., Britton K. L., Rice D. W., Rob A., Stillman T. J. Structural consequences of sequence patterns in the fingerprint region of the nucleotide binding fold. Implications for nucleotide specificity. J Mol Biol. 1992 Nov 20;228(2):662–671. doi: 10.1016/0022-2836(92)90848-e. [DOI] [PubMed] [Google Scholar]
  5. Barany F. Single-stranded hexameric linkers: a system for in-phase insertion mutagenesis and protein engineering. Gene. 1985;37(1-3):111–123. doi: 10.1016/0378-1119(85)90263-x. [DOI] [PubMed] [Google Scholar]
  6. Bochner B. R., Savageau M. A. Generalized indicator plate for genetic, metabolic, and taxonomic studies with microorganisms. Appl Environ Microbiol. 1977 Feb;33(2):434–444. doi: 10.1128/aem.33.2.434-444.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Boggess S. F., Stewart C. R. Effect of water stress on proline synthesis from radioactive precursors. Plant Physiol. 1976 Sep;58(3):398–401. doi: 10.1104/pp.58.3.398. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Boyer H. W., Roulland-Dussoix D. A complementation analysis of the restriction and modification of DNA in Escherichia coli. J Mol Biol. 1969 May 14;41(3):459–472. doi: 10.1016/0022-2836(69)90288-5. [DOI] [PubMed] [Google Scholar]
  9. Chen L. M., Maloy S. Regulation of proline utilization in enteric bacteria: cloning and characterization of the Klebsiella put control region. J Bacteriol. 1991 Jan;173(2):783–790. doi: 10.1128/jb.173.2.783-790.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cook P. F., Wedding R. T. salmonella typhimurium/enzymol. Arch Biochem Biophys. 1977 Jan 15;178(1):293–302. doi: 10.1016/0003-9861(77)90194-1. [DOI] [PubMed] [Google Scholar]
  11. Csonka L. N. Proline over-production results in enhanced osmotolerance in Salmonella typhimurium. Mol Gen Genet. 1981;182(1):82–86. doi: 10.1007/BF00422771. [DOI] [PubMed] [Google Scholar]
  12. Dendinger S., Brill W. J. Regulation of proline degradation in Salmonella typhimurium. J Bacteriol. 1970 Jul;103(1):144–152. doi: 10.1128/jb.103.1.144-152.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ditta G., Stanfield S., Corbin D., Helinski D. R. Broad host range DNA cloning system for gram-negative bacteria: construction of a gene bank of Rhizobium meliloti. Proc Natl Acad Sci U S A. 1980 Dec;77(12):7347–7351. doi: 10.1073/pnas.77.12.7347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  16. Friedman A. M., Long S. R., Brown S. E., Buikema W. J., Ausubel F. M. Construction of a broad host range cosmid cloning vector and its use in the genetic analysis of Rhizobium mutants. Gene. 1982 Jun;18(3):289–296. doi: 10.1016/0378-1119(82)90167-6. [DOI] [PubMed] [Google Scholar]
  17. Fu C., Maier R. J. Rapid and efficient selection of recombinant site-directed mutants of Bradyrhizobium japonicum by colony hybridization. FEMS Microbiol Lett. 1993 May 1;109(1):33–38. doi: 10.1111/j.1574-6968.1993.tb06139.x. [DOI] [PubMed] [Google Scholar]
  18. Glaser P., Kunst F., Arnaud M., Coudart M. P., Gonzales W., Hullo M. F., Ionescu M., Lubochinsky B., Marcelino L., Moszer I. Bacillus subtilis genome project: cloning and sequencing of the 97 kb region from 325 degrees to 333 degrees. Mol Microbiol. 1993 Oct;10(2):371–384. [PubMed] [Google Scholar]
  19. Hagedorn C. H. Demonstration of a NADPH-linked delta 1-pyrroline-5-carboxylate-proline shuttle in a cell-free rat liver system. Biochim Biophys Acta. 1986 Oct 29;884(1):11–17. doi: 10.1016/0304-4165(86)90220-5. [DOI] [PubMed] [Google Scholar]
  20. Hahn D. R., Myers R. S., Kent C. R., Maloy S. R. Regulation of proline utilization in Salmonella typhimurium: molecular characterization of the put operon, and DNA sequence of the put control region. Mol Gen Genet. 1988 Jul;213(1):125–133. doi: 10.1007/BF00333408. [DOI] [PubMed] [Google Scholar]
  21. Hattermann D. R., Stacey G. Efficient DNA transformation of Bradyrhizobium japonicum by electroporation. Appl Environ Microbiol. 1990 Apr;56(4):833–836. doi: 10.1128/aem.56.4.833-836.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Hayward D. C., Delaney S. J., Campbell H. D., Ghysen A., Benzer S., Kasprzak A. B., Cotsell J. N., Young I. G., Miklos G. L. The sluggish-A gene of Drosophila melanogaster is expressed in the nervous system and encodes proline oxidase, a mitochondrial enzyme involved in glutamate biosynthesis. Proc Natl Acad Sci U S A. 1993 Apr 1;90(7):2979–2983. doi: 10.1073/pnas.90.7.2979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Hempel J., Nicholas H., Lindahl R. Aldehyde dehydrogenases: widespread structural and functional diversity within a shared framework. Protein Sci. 1993 Nov;2(11):1890–1900. doi: 10.1002/pro.5560021111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kishor PBK., Hong Z., Miao G. H., Hu CAA., Verma DPS. Overexpression of [delta]-Pyrroline-5-Carboxylate Synthetase Increases Proline Production and Confers Osmotolerance in Transgenic Plants. Plant Physiol. 1995 Aug;108(4):1387–1394. doi: 10.1104/pp.108.4.1387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Kohl D. H., Schubert K. R., Carter M. B., Hagedorn C. H., Shearer G. Proline metabolism in N2-fixing root nodules: energy transfer and regulation of purine synthesis. Proc Natl Acad Sci U S A. 1988 Apr;85(7):2036–2040. doi: 10.1073/pnas.85.7.2036. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Krzywicki K. A., Brandriss M. C. Primary structure of the nuclear PUT2 gene involved in the mitochondrial pathway for proline utilization in Saccharomyces cerevisiae. Mol Cell Biol. 1984 Dec;4(12):2837–2842. doi: 10.1128/mcb.4.12.2837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Kunkel T. A., Roberts J. D., Zakour R. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 1987;154:367–382. doi: 10.1016/0076-6879(87)54085-x. [DOI] [PubMed] [Google Scholar]
  28. Le Rudulier D., Yang S. S., Csonka L. N. Nitrogen fixation in Klebsiella pneumoniae during osmotic stress. Effect of exogenous proline or a proline overproducing plasmid. Biochim Biophys Acta. 1982 Nov 24;719(2):273–283. doi: 10.1016/0304-4165(82)90099-x. [DOI] [PubMed] [Google Scholar]
  29. Ling M., Allen S. W., Wood J. M. Sequence analysis identifies the proline dehydrogenase and delta 1-pyrroline-5-carboxylate dehydrogenase domains of the multifunctional Escherichia coli PutA protein. J Mol Biol. 1994 Nov 11;243(5):950–956. doi: 10.1006/jmbi.1994.1696. [DOI] [PubMed] [Google Scholar]
  30. Merrick M. J. In a class of its own--the RNA polymerase sigma factor sigma 54 (sigma N). Mol Microbiol. 1993 Dec;10(5):903–909. doi: 10.1111/j.1365-2958.1993.tb00961.x. [DOI] [PubMed] [Google Scholar]
  31. Nakao T., Yamato I., Anraku Y. Nucleotide sequence of putC, the regulatory region for the put regulon of Escherichia coli K12. Mol Gen Genet. 1987 Dec;210(2):364–368. doi: 10.1007/BF00325707. [DOI] [PubMed] [Google Scholar]
  32. Ostrovsky de Spicer P., Maloy S. PutA protein, a membrane-associated flavin dehydrogenase, acts as a redox-dependent transcriptional regulator. Proc Natl Acad Sci U S A. 1993 May 1;90(9):4295–4298. doi: 10.1073/pnas.90.9.4295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Phang J. M., Downing S. J., Valle D. L., Kowaloff E. M. A radioisotopic assay for proline oxidase activity. J Lab Clin Med. 1975 Feb;85(2):312–317. [PubMed] [Google Scholar]
  34. Prentki P., Krisch H. M. In vitro insertional mutagenesis with a selectable DNA fragment. Gene. 1984 Sep;29(3):303–313. doi: 10.1016/0378-1119(84)90059-3. [DOI] [PubMed] [Google Scholar]
  35. Ratzkin B., Roth J. Cluster of genes controlling proline degradation in Salmonella typhimurium. J Bacteriol. 1978 Feb;133(2):744–754. doi: 10.1128/jb.133.2.744-754.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Srere P. A. Complexes of sequential metabolic enzymes. Annu Rev Biochem. 1987;56:89–124. doi: 10.1146/annurev.bi.56.070187.000513. [DOI] [PubMed] [Google Scholar]
  37. Stewart C. R. Inhibition of proline oxidation by water stress. Plant Physiol. 1977 May;59(5):930–932. doi: 10.1104/pp.59.5.930. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Wang S. S., Brandriss M. C. Proline utilization in Saccharomyces cerevisiae: sequence, regulation, and mitochondrial localization of the PUT1 gene product. Mol Cell Biol. 1987 Dec;7(12):4431–4440. doi: 10.1128/mcb.7.12.4431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Wood J. M. Genetics of L-proline utilization in Escherichia coli. J Bacteriol. 1981 Jun;146(3):895–901. doi: 10.1128/jb.146.3.895-901.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Wood J. M. Proline porters effect the utilization of proline as nutrient or osmoprotectant for bacteria. J Membr Biol. 1988 Dec;106(3):183–202. doi: 10.1007/BF01872157. [DOI] [PubMed] [Google Scholar]
  41. Wood J. M., Zadworny D. Amplification of the put genes and identification of the put gene products in Escherichia coli K12. Can J Biochem. 1980 Oct;58(10):787–796. doi: 10.1139/o80-110. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES