Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1996 Feb;62(2):323–327. doi: 10.1128/aem.62.2.323-327.1996

Physiochemical characterization of the nisin-membrane interaction with liposomes derived from Listeria monocytogenes.

K Winkowski 1, R D Ludescher 1, T J Montville 1
PMCID: PMC167801  PMID: 8593036

Abstract

Mechanistic information about the bacteriocin nisin was obtained by examining the efflux of 5(6)-carboxy-fluorescein from Listeria monocytogenes-derived liposomes. The initial leakage rate (percentage of efflux per minute) of the entrapped dye was dependent on both nisin and lipid concentrations. At all nisin concentrations tested, 5(6)-carboxyfluorescein efflux plateaued before all of the 5(6)-carboxyfluorescein was released (suggesting that pore formation was transient), but efflux resumed when more nisin was added. Isotherms for the binding of nisin to liposomes constructed on the basis of the Langmuir isotherm gave an apparent binding constant of 6.2 x 10(5)M(-1) at pH 6.0. The critical number of nisin molecules required to induce efflux from liposomes at pH 6.0 was approximately 7,000 molecules per liposome. The pH affected the 5(6)-carboxyfluorescein leakage rates, with higher pH values resulting in higher leakage rates. The increased leakage rate observed at higher pH values was not due to an increase in the binding affinity of the nisin molecules towards the liposomal membrane. Rather, the critical number of nisin molecules required to induce activity was decreased (approximately 1,000 nisin molecules per liposome at pH 7.0). These data are consistent with a poration mechanism in which the ionization state of histidine residues in nisin plays an important role in membrane permeabilization.

Full Text

The Full Text of this article is available as a PDF (235.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abee T., Rombouts F. M., Hugenholtz J., Guihard G., Letellier L. Mode of Action of Nisin Z against Listeria monocytogenes Scott A Grown at High and Low Temperatures. Appl Environ Microbiol. 1994 Jun;60(6):1962–1968. doi: 10.1128/aem.60.6.1962-1968.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Benkerroum N., Sandine W. E. Inhibitory action of nisin against Listeria monocytogenes. J Dairy Sci. 1988 Dec;71(12):3237–3245. doi: 10.3168/jds.S0022-0302(88)79929-4. [DOI] [PubMed] [Google Scholar]
  3. Beschiaschvili G., Seelig J. Melittin binding to mixed phosphatidylglycerol/phosphatidylcholine membranes. Biochemistry. 1990 Jan 9;29(1):52–58. doi: 10.1021/bi00453a007. [DOI] [PubMed] [Google Scholar]
  4. Bruno M. E., Kaiser A., Montville T. J. Depletion of proton motive force by nisin in Listeria monocytogenes cells. Appl Environ Microbiol. 1992 Jul;58(7):2255–2259. doi: 10.1128/aem.58.7.2255-2259.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Driessen A. J., van den Hooven H. W., Kuiper W., van de Kamp M., Sahl H. G., Konings R. N., Konings W. N. Mechanistic studies of lantibiotic-induced permeabilization of phospholipid vesicles. Biochemistry. 1995 Feb 7;34(5):1606–1614. doi: 10.1021/bi00005a017. [DOI] [PubMed] [Google Scholar]
  6. Garcerá M. J., Elferink M. G., Driessen A. J., Konings W. N. In vitro pore-forming activity of the lantibiotic nisin. Role of protonmotive force and lipid composition. Eur J Biochem. 1993 Mar 1;212(2):417–422. doi: 10.1111/j.1432-1033.1993.tb17677.x. [DOI] [PubMed] [Google Scholar]
  7. Grant E., Jr, Beeler T. J., Taylor K. M., Gable K., Roseman M. A. Mechanism of magainin 2a induced permeabilization of phospholipid vesicles. Biochemistry. 1992 Oct 20;31(41):9912–9918. doi: 10.1021/bi00156a008. [DOI] [PubMed] [Google Scholar]
  8. Green P. R., Bell R. M. Asymmetric reconstitution of homogeneous Escherichia coli sn-glycerol-3-phosphate acyltransferase into phospholipid vesicles. J Biol Chem. 1984 Dec 10;259(23):14688–14694. [PubMed] [Google Scholar]
  9. Gross E., Morell J. L. The structure of nisin. J Am Chem Soc. 1971 Sep 8;93(18):4634–4635. doi: 10.1021/ja00747a073. [DOI] [PubMed] [Google Scholar]
  10. Hromy J. M., Carman G. M. Reconstitution of Saccharomyces cerevisiae phosphatidylserine synthase into phospholipid vesicles. Modulation of activity by phospholipids. J Biol Chem. 1986 Nov 25;261(33):15572–15576. [PubMed] [Google Scholar]
  11. Klaenhammer T. R. Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol Rev. 1993 Sep;12(1-3):39–85. doi: 10.1111/j.1574-6976.1993.tb00012.x. [DOI] [PubMed] [Google Scholar]
  12. Matsuzaki K., Harada M., Handa T., Funakoshi S., Fujii N., Yajima H., Miyajima K. Magainin 1-induced leakage of entrapped calcein out of negatively-charged lipid vesicles. Biochim Biophys Acta. 1989 May 19;981(1):130–134. doi: 10.1016/0005-2736(89)90090-4. [DOI] [PubMed] [Google Scholar]
  13. Matsuzaki K., Murase O., Fujii N., Miyajima K. Translocation of a channel-forming antimicrobial peptide, magainin 2, across lipid bilayers by forming a pore. Biochemistry. 1995 May 16;34(19):6521–6526. doi: 10.1021/bi00019a033. [DOI] [PubMed] [Google Scholar]
  14. Matsuzaki K., Sugishita K., Fujii N., Miyajima K. Molecular basis for membrane selectivity of an antimicrobial peptide, magainin 2. Biochemistry. 1995 Mar 14;34(10):3423–3429. doi: 10.1021/bi00010a034. [DOI] [PubMed] [Google Scholar]
  15. Mchaourab H. S., Hyde J. S., Feix J. B. Binding and state of aggregation of spin-labeled cecropin AD in phospholipid bilayers: effects of surface charge and fatty acyl chain length. Biochemistry. 1994 May 31;33(21):6691–6699. doi: 10.1021/bi00187a040. [DOI] [PubMed] [Google Scholar]
  16. Ojcius D. M., Young J. D. Cytolytic pore-forming proteins and peptides: is there a common structural motif? Trends Biochem Sci. 1991 Jun;16(6):225–229. doi: 10.1016/0968-0004(91)90090-i. [DOI] [PubMed] [Google Scholar]
  17. Parente R. A., Nir S., Szoka F. C., Jr Mechanism of leakage of phospholipid vesicle contents induced by the peptide GALA. Biochemistry. 1990 Sep 18;29(37):8720–8728. doi: 10.1021/bi00489a031. [DOI] [PubMed] [Google Scholar]
  18. Reynolds J. A., Nozaki Y., Tanford C. Gel-exclusion chromatography on S1000 Sephacryl: application to phospholipid vesicles. Anal Biochem. 1983 Apr 15;130(2):471–474. doi: 10.1016/0003-2697(83)90618-8. [DOI] [PubMed] [Google Scholar]
  19. Roseman M. A., Holloway P. W., Calabro M. A., Thompson T. E. Exchange of cytochrome b5 between phospholipid vesicles. J Biol Chem. 1977 Jul 25;252(14):4842–4849. [PubMed] [Google Scholar]
  20. Sahl H. G., Kordel M., Benz R. Voltage-dependent depolarization of bacterial membranes and artificial lipid bilayers by the peptide antibiotic nisin. Arch Microbiol. 1987;149(2):120–124. doi: 10.1007/BF00425076. [DOI] [PubMed] [Google Scholar]
  21. Schwarz G., Beschiaschvili G. Thermodynamic and kinetic studies on the association of melittin with a phospholipid bilayer. Biochim Biophys Acta. 1989 Feb 13;979(1):82–90. doi: 10.1016/0005-2736(89)90526-9. [DOI] [PubMed] [Google Scholar]
  22. Winkowski K., Bruno M. E., Montville T. J. Correlation of bioenergetic parameters with cell death in Listeria monocytogenes cells exposed to nisin. Appl Environ Microbiol. 1994 Nov;60(11):4186–4188. doi: 10.1128/aem.60.11.4186-4188.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES