Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1996 Feb;62(2):570–577. doi: 10.1128/aem.62.2.570-577.1996

The peptide synthetase gene phsA from Streptomyces viridochromogenes is not juxtaposed with other genes involved in nonribosomal biosynthesis of peptides.

D Schwartz 1, R Alijah 1, B Nussbaumer 1, S Pelzer 1, W Wohlleben 1
PMCID: PMC167821  PMID: 8593056

Abstract

By complementation of a previously described non-phosphinothricin tripeptide (PTT)-producing mutant, NTG1, which is blocked in nonribosomal synthesis of the peptide, a DNA fragment including the putative peptide synthetase gene phsA was isolated (W. Wohlleben, R. Alijah, J. Dorendorf, D. Hillemann, B. Nussbaumer, and S. Pelzer, Gene 115:127-132, 1992). Sequence analysis of phsA revealed that it encodes a protein of 622 amino acids with regions which are highly similar to core motifs characteristic for peptide synthetases. PhsA represents one functional domain of a peptide synthetase which is necessary for activation and condensation of one amino acid, probably N-acetyl-demethyl-phosphinothricin. With regard to the arrangement of the flanking genes, phsA is the first peptide synthetase gene which is not in the direct neighborhood of additional peptide synthetase genes involved in the formation of peptide antibiotics. Gene disruption mutants with internal fragments of phsA subcloned in temperature-sensitive pGM vectors were generated. Integration occurred either into the chromosomal copy of phsA or into a gene outside the known phsA locus, resulting in two classes of non-PTT-producing mutants. In cofeeding experiments the former phsA mutants showed the same phenotype as did NTG1, which confirmed participation of phsA in nonribosomal synthesis of PTT. A truncated phsA gene was overexpressed in Escherichia coli, and the resulting protein of 593 amino acids was purified for raising antibodies. By performing immunoblotting experiments, the expression of phsA could be detected in Streptomyces viridochromogenes Tü494 in the stationary-growth phase after 4 days of incubation.

Full Text

The Full Text of this article is available as a PDF (476.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alijah R., Dorendorf J., Talay S., Pühler A., Wohlleben W. Genetic analysis of the phosphinothricin-tripeptide biosynthetic pathway of Streptomyces viridochromogenes Tü494. Appl Microbiol Biotechnol. 1991 Mar;34(6):749–755. doi: 10.1007/BF00169345. [DOI] [PubMed] [Google Scholar]
  2. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  3. Anzai H., Murakami T., Imai S., Satoh A., Nagaoka K., Thompson C. J. Transcriptional regulation of bialaphos biosynthesis in Streptomyces hygroscopicus. J Bacteriol. 1987 Aug;169(8):3482–3488. doi: 10.1128/jb.169.8.3482-3488.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bayer E., Gugel K. H., Hägele K., Hagenmaier H., Jessipow S., König W. A., Zähner H. Stoffwechselprodukte von Mikroorganismen. 98. Phosphinothricin und Phosphinothricyl-Alanyl-Alanin. Helv Chim Acta. 1972 Jan 31;55(1):224–239. doi: 10.1002/hlca.19720550126. [DOI] [PubMed] [Google Scholar]
  5. Bibb M. J., Findlay P. R., Johnson M. W. The relationship between base composition and codon usage in bacterial genes and its use for the simple and reliable identification of protein-coding sequences. Gene. 1984 Oct;30(1-3):157–166. doi: 10.1016/0378-1119(84)90116-1. [DOI] [PubMed] [Google Scholar]
  6. Cosmina P., Rodriguez F., de Ferra F., Grandi G., Perego M., Venema G., van Sinderen D. Sequence and analysis of the genetic locus responsible for surfactin synthesis in Bacillus subtilis. Mol Microbiol. 1993 May;8(5):821–831. doi: 10.1111/j.1365-2958.1993.tb01629.x. [DOI] [PubMed] [Google Scholar]
  7. Dieckmann R., Lee Y. O., van Liempt H., von Döhren H., Kleinkauf H. Expression of an active adenylate-forming domain of peptide synthetases corresponding to acyl-CoA-synthetases. FEBS Lett. 1995 Jan 3;357(2):212–216. doi: 10.1016/0014-5793(94)01342-x. [DOI] [PubMed] [Google Scholar]
  8. Fuma S., Fujishima Y., Corbell N., D'Souza C., Nakano M. M., Zuber P., Yamane K. Nucleotide sequence of 5' portion of srfA that contains the region required for competence establishment in Bacillus subtilus. Nucleic Acids Res. 1993 Jan 11;21(1):93–97. doi: 10.1093/nar/21.1.93. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gocht M., Marahiel M. A. Analysis of core sequences in the D-Phe activating domain of the multifunctional peptide synthetase TycA by site-directed mutagenesis. J Bacteriol. 1994 May;176(9):2654–2662. doi: 10.1128/jb.176.9.2654-2662.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gramajo H. C., White J., Hutchinson C. R., Bibb M. J. Overproduction and localization of components of the polyketide synthase of Streptomyces glaucescens involved in the production of the antibiotic tetracenomycin C. J Bacteriol. 1991 Oct;173(20):6475–6483. doi: 10.1128/jb.173.20.6475-6483.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hara O., Anzai H., Imai S., Kumada Y., Murakami T., Itoh R., Takano E., Satoh A., Nagaoka K. The bialaphos biosynthetic genes of Streptomyces hygroscopicus: cloning and analysis of the genes involved in the alanylation step. J Antibiot (Tokyo) 1988 Apr;41(4):538–547. doi: 10.7164/antibiotics.41.538. [DOI] [PubMed] [Google Scholar]
  12. Hara O., Murakami T., Imai S., Anzai H., Itoh R., Kumada Y., Takano E., Satoh E., Satoh A., Nagaoka K. The bialaphos biosynthetic genes of Streptomyces viridochromogenes: cloning, heterospecific expression, and comparison with the genes of Streptomyces hygroscopicus. J Gen Microbiol. 1991 Feb;137(2):351–359. doi: 10.1099/00221287-137-2-351. [DOI] [PubMed] [Google Scholar]
  13. Harley C. B., Reynolds R. P. Analysis of E. coli promoter sequences. Nucleic Acids Res. 1987 Mar 11;15(5):2343–2361. doi: 10.1093/nar/15.5.2343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hohn B., Collins J. A small cosmid for efficient cloning of large DNA fragments. Gene. 1980 Nov;11(3-4):291–298. doi: 10.1016/0378-1119(80)90069-4. [DOI] [PubMed] [Google Scholar]
  15. Holt T. G., Chang C., Laurent-Winter C., Murakami T., Garrels J. I., Davies J. E., Thompson C. J. Global changes in gene expression related to antibiotic synthesis in Streptomyces hygroscopicus. Mol Microbiol. 1992 Apr;6(8):969–980. doi: 10.1111/j.1365-2958.1992.tb02163.x. [DOI] [PubMed] [Google Scholar]
  16. Khosla C., Ebert-Khosla S., Hopwood D. A. Targeted gene replacements in a Streptomyces polyketide synthase gene cluster: role for the acyl carrier protein. Mol Microbiol. 1992 Nov;6(21):3237–3249. doi: 10.1111/j.1365-2958.1992.tb01778.x. [DOI] [PubMed] [Google Scholar]
  17. Khosla C., McDaniel R., Ebert-Khosla S., Torres R., Sherman D. H., Bibb M. J., Hopwood D. A. Genetic construction and functional analysis of hybrid polyketide synthases containing heterologous acyl carrier proteins. J Bacteriol. 1993 Apr;175(8):2197–2204. doi: 10.1128/jb.175.8.2197-2204.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Krause M., Marahiel M. A. Organization of the biosynthesis genes for the peptide antibiotic gramicidin S. J Bacteriol. 1988 Oct;170(10):4669–4674. doi: 10.1128/jb.170.10.4669-4674.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  20. Lawlor E. J., Baylis H. A., Chater K. F. Pleiotropic morphological and antibiotic deficiencies result from mutations in a gene encoding a tRNA-like product in Streptomyces coelicolor A3(2). Genes Dev. 1987 Dec;1(10):1305–1310. doi: 10.1101/gad.1.10.1305. [DOI] [PubMed] [Google Scholar]
  21. Leskiw B. K., Lawlor E. J., Fernandez-Abalos J. M., Chater K. F. TTA codons in some genes prevent their expression in a class of developmental, antibiotic-negative, Streptomyces mutants. Proc Natl Acad Sci U S A. 1991 Mar 15;88(6):2461–2465. doi: 10.1073/pnas.88.6.2461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lipmann F. Attempts to map a process evolution of peptide biosynthesis. Science. 1971 Sep 3;173(4000):875–884. doi: 10.1126/science.173.4000.875. [DOI] [PubMed] [Google Scholar]
  23. Marahiel M. A. Multidomain enzymes involved in peptide synthesis. FEBS Lett. 1992 Jul 27;307(1):40–43. doi: 10.1016/0014-5793(92)80898-q. [DOI] [PubMed] [Google Scholar]
  24. Maxam A. M., Gilbert W. Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol. 1980;65(1):499–560. doi: 10.1016/s0076-6879(80)65059-9. [DOI] [PubMed] [Google Scholar]
  25. Mittenhuber G., Weckermann R., Marahiel M. A. Gene cluster containing the genes for tyrocidine synthetases 1 and 2 from Bacillus brevis: evidence for an operon. J Bacteriol. 1989 Sep;171(9):4881–4887. doi: 10.1128/jb.171.9.4881-4887.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Muth G., Farr M., Hartmann V., Wohlleben W. Streptomyces ghanaensis plasmid pSG5: nucleotide sequence analysis of the self-transmissible minimal replicon and characterization of the replication mode. Plasmid. 1995 Mar;33(2):113–126. doi: 10.1006/plas.1995.1013. [DOI] [PubMed] [Google Scholar]
  27. Pavela-Vrancic M., Pfeifer E., van Liempt H., Schäfer H. J., von Döhren H., Kleinkauf H. ATP binding in peptide synthetases: determination of contact sites of the adenine moiety by photoaffinity labeling of tyrocidine synthetase 1 with 2-azidoadenosine triphosphate. Biochemistry. 1994 May 24;33(20):6276–6283. doi: 10.1021/bi00186a030. [DOI] [PubMed] [Google Scholar]
  28. Pearson W. R., Lipman D. J. Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2444–2448. doi: 10.1073/pnas.85.8.2444. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Pridmore R. D. New and versatile cloning vectors with kanamycin-resistance marker. Gene. 1987;56(2-3):309–312. doi: 10.1016/0378-1119(87)90149-1. [DOI] [PubMed] [Google Scholar]
  30. Raibaud A., Zalacain M., Holt T. G., Tizard R., Thompson C. J. Nucleotide sequence analysis reveals linked N-acetyl hydrolase, thioesterase, transport, and regulatory genes encoded by the bialaphos biosynthetic gene cluster of Streptomyces hygroscopicus. J Bacteriol. 1991 Jul;173(14):4454–4463. doi: 10.1128/jb.173.14.4454-4463.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Ringquist S., Shinedling S., Barrick D., Green L., Binkley J., Stormo G. D., Gold L. Translation initiation in Escherichia coli: sequences within the ribosome-binding site. Mol Microbiol. 1992 May;6(9):1219–1229. doi: 10.1111/j.1365-2958.1992.tb01561.x. [DOI] [PubMed] [Google Scholar]
  32. Rusnak F., Sakaitani M., Drueckhammer D., Reichert J., Walsh C. T. Biosynthesis of the Escherichia coli siderophore enterobactin: sequence of the entF gene, expression and purification of EntF, and analysis of covalent phosphopantetheine. Biochemistry. 1991 Mar 19;30(11):2916–2927. doi: 10.1021/bi00225a027. [DOI] [PubMed] [Google Scholar]
  33. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Saraste M., Sibbald P. R., Wittinghofer A. The P-loop--a common motif in ATP- and GTP-binding proteins. Trends Biochem Sci. 1990 Nov;15(11):430–434. doi: 10.1016/0968-0004(90)90281-f. [DOI] [PubMed] [Google Scholar]
  35. Schlumbohm W., Stein T., Ullrich C., Vater J., Krause M., Marahiel M. A., Kruft V., Wittmann-Liebold B. An active serine is involved in covalent substrate amino acid binding at each reaction center of gramicidin S synthetase. J Biol Chem. 1991 Dec 5;266(34):23135–23141. [PubMed] [Google Scholar]
  36. Staden R., McLachlan A. D. Codon preference and its use in identifying protein coding regions in long DNA sequences. Nucleic Acids Res. 1982 Jan 11;10(1):141–156. doi: 10.1093/nar/10.1.141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Strauch E., Wohlleben W., Pühler A. Cloning of a phosphinothricin N-acetyltransferase gene from Streptomyces viridochromogenes Tü494 and its expression in Streptomyces lividans and Escherichia coli. Gene. 1988;63(1):65–74. doi: 10.1016/0378-1119(88)90546-x. [DOI] [PubMed] [Google Scholar]
  38. Strauch E., Wohlleben W., Pühler A. Development of a plasmid-cloning system for Streptomyces viridochromogenes Tü494. J Basic Microbiol. 1987;27(8):449–455. doi: 10.1002/jobm.3620270812. [DOI] [PubMed] [Google Scholar]
  39. Strohl W. R. Compilation and analysis of DNA sequences associated with apparent streptomycete promoters. Nucleic Acids Res. 1992 Mar 11;20(5):961–974. doi: 10.1093/nar/20.5.961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Tokita K., Hori K., Kurotsu T., Kanda M., Saito Y. Effect of single base substitutions at glycine-870 codon of gramicidin S synthetase 2 gene on proline activation. J Biochem. 1993 Oct;114(4):522–527. doi: 10.1093/oxfordjournals.jbchem.a124210. [DOI] [PubMed] [Google Scholar]
  41. Turgay K., Krause M., Marahiel M. A. Four homologous domains in the primary structure of GrsB are related to domains in a superfamily of adenylate-forming enzymes. Mol Microbiol. 1992 Feb;6(4):529–546. doi: 10.1111/j.1365-2958.1992.tb01498.x. [DOI] [PubMed] [Google Scholar]
  42. Vieira J., Messing J. The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene. 1982 Oct;19(3):259–268. doi: 10.1016/0378-1119(82)90015-4. [DOI] [PubMed] [Google Scholar]
  43. Wohlleben W., Alijah R., Dorendorf J., Hillemann D., Nussbaumer B., Pelzer S. Identification and characterization of phosphinothricin-tripeptide biosynthetic genes in Streptomyces viridochromogenes. Gene. 1992 Jun 15;115(1-2):127–132. doi: 10.1016/0378-1119(92)90550-9. [DOI] [PubMed] [Google Scholar]
  44. Wohlleben W., Arnold W., Broer I., Hillemann D., Strauch E., Pühler A. Nucleotide sequence of the phosphinothricin N-acetyltransferase gene from Streptomyces viridochromogenes Tü494 and its expression in Nicotiana tabacum. Gene. 1988 Oct 15;70(1):25–37. doi: 10.1016/0378-1119(88)90101-1. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES