Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1996 Feb;62(2):601–606. doi: 10.1128/aem.62.2.601-606.1996

Catabolite repression of the toluene degradation pathway in Pseudomonas putida harboring pWW0 under various conditions of nutrient limitation in chemostat culture.

W A Duetz 1, S Marqués 1, B Wind 1, J L Ramos 1, J G van Andel 1
PMCID: PMC167825  PMID: 8593060

Abstract

In earlier studies, the pathway of toluene and m- and p-xylene degradation (TOL pathway) in Pseudomonas putida (pWW0) was found to be subject to catabolite repression when the strain was grown at the maximal rate on glucose or succinate in the presence of an inducer. This report describes catabolite repression of the TOL pathway by succinate in chemostat cultures run at a low dilution rate (D = 0.05 h-1) under different conditions of inorganic-nutrient limitation. The activity of benzylalcohol dehydrogenase (BADH) in cell extracts was used as a measure of the expression of the TOL upper pathway. When cells were grown in the presence of 10 to 15 mM succinate under conditions of phosphate or sulfate limitation, the BADH activity in response to the nonmetabolizable inducer o-xylene was less than 2% of that of cells grown under conditions of succinate limitation. Less repression was found under conditions of ammonium or oxygen limitation (2 to 10% and 20 to 35%, respectively, of the BADH levels under succinate limitation). The BADH expression levels determined under the different growth conditions appeared to correlate well with the mRNA transcript levels from the upper pathway promoter (Pu), which indicates that repression was due to a blockage at the transcriptional level. The meta-cleavage pathway was found to be less susceptible to catabolite repression. The results obtained suggest that the occurrence of catabolite repression is related to a high-energy status of the cells rather than to a high growth rate or directly to the presence of growth-saturating concentrations of a primary carbon and energy source.

Full Text

The Full Text of this article is available as a PDF (231.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abril M. A., Michan C., Timmis K. N., Ramos J. L. Regulator and enzyme specificities of the TOL plasmid-encoded upper pathway for degradation of aromatic hydrocarbons and expansion of the substrate range of the pathway. J Bacteriol. 1989 Dec;171(12):6782–6790. doi: 10.1128/jb.171.12.6782-6790.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Assinder S. J., Williams P. A. The TOL plasmids: determinants of the catabolism of toluene and the xylenes. Adv Microb Physiol. 1990;31:1–69. doi: 10.1016/s0065-2911(08)60119-8. [DOI] [PubMed] [Google Scholar]
  3. Cerdan P., Wasserfallen A., Rekik M., Timmis K. N., Harayama S. Substrate specificity of catechol 2,3-dioxygenase encoded by TOL plasmid pWW0 of Pseudomonas putida and its relationship to cell growth. J Bacteriol. 1994 Oct;176(19):6074–6081. doi: 10.1128/jb.176.19.6074-6081.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Duetz W. A., Marqués S., de Jong C., Ramos J. L., van Andel J. G. Inducibility of the TOL catabolic pathway in Pseudomonas putida (pWW0) growing on succinate in continuous culture: evidence of carbon catabolite repression control. J Bacteriol. 1994 Apr;176(8):2354–2361. doi: 10.1128/jb.176.8.2354-2361.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Duetz W. A., Winson M. K., van Andel J. G., Williams P. A. Mathematical analysis of catabolic function loss in a population of Pseudomonas putida mt-2 during non-limited growth on benzoate. J Gen Microbiol. 1991 Jun;137(6):1363–1368. doi: 10.1099/00221287-137-6-1363. [DOI] [PubMed] [Google Scholar]
  6. Duetz W. A., van Andel J. G. Stability of TOL plasmid pWW0 in Pseudomonas putida mt-2 under non-selective conditions in continuous culture. J Gen Microbiol. 1991 Jun;137(6):1369–1374. doi: 10.1099/00221287-137-6-1369. [DOI] [PubMed] [Google Scholar]
  7. Harder W., Dijkhuizen L. Strategies of mixed substrate utilization in microorganisms. Philos Trans R Soc Lond B Biol Sci. 1982 Jun 11;297(1088):459–480. doi: 10.1098/rstb.1982.0055. [DOI] [PubMed] [Google Scholar]
  8. Hartline R. A., Gunsalus I. C. Induction specificity and catabolite repression of the early enzymes in camphor degradation by Pseudomonas putida. J Bacteriol. 1971 May;106(2):468–478. doi: 10.1128/jb.106.2.468-478.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Holtel A., Marqués S., Möhler I., Jakubzik U., Timmis K. N. Carbon source-dependent inhibition of xyl operon expression of the Pseudomonas putida TOL plasmid. J Bacteriol. 1994 Mar;176(6):1773–1776. doi: 10.1128/jb.176.6.1773-1776.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hugouvieux-Cotte-Pattat N., Köhler T., Rekik M., Harayama S. Growth-phase-dependent expression of the Pseudomonas putida TOL plasmid pWW0 catabolic genes. J Bacteriol. 1990 Dec;172(12):6651–6660. doi: 10.1128/jb.172.12.6651-6660.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. LONGMUIR I. S. Respiration rate of bacteria as a function of oxygen concentration. Biochem J. 1954 May;57(1):81–87. doi: 10.1042/bj0570081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lewis D. L., Kollig H. P., Hodson R. E. Nutrient limitation and adaptation of microbial populations to chemical transformations. Appl Environ Microbiol. 1986 Mar;51(3):598–603. doi: 10.1128/aem.51.3.598-603.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Marqués S., Holtel A., Timmis K. N., Ramos J. L. Transcriptional induction kinetics from the promoters of the catabolic pathways of TOL plasmid pWW0 of Pseudomonas putida for metabolism of aromatics. J Bacteriol. 1994 May;176(9):2517–2524. doi: 10.1128/jb.176.9.2517-2524.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Marqués S., Ramos J. L., Timmis K. N. Analysis of the mRNA structure of the Pseudomonas putida TOL meta fission pathway operon around the transcription initiation point, the xylTE and the xylFJ regions. Biochim Biophys Acta. 1993 Nov 16;1216(2):227–236. doi: 10.1016/0167-4781(93)90149-8. [DOI] [PubMed] [Google Scholar]
  15. Marqués S., Ramos J. L. Transcriptional control of the Pseudomonas putida TOL plasmid catabolic pathways. Mol Microbiol. 1993 Sep;9(5):923–929. doi: 10.1111/j.1365-2958.1993.tb01222.x. [DOI] [PubMed] [Google Scholar]
  16. Mason J. R. The induction and repression of benzene and catechol oxidizing capacity of Pseudomonas putida ML2 studied in perturbed chemostat culture. Arch Microbiol. 1994;162(1-2):57–62. doi: 10.1007/BF00264373. [DOI] [PubMed] [Google Scholar]
  17. Mills S. A., Frankenberger W. T., Jr Evaluation of phosphorus sources promoting bioremediation of diesel fuel in soil. Bull Environ Contam Toxicol. 1994 Aug;53(2):280–284. doi: 10.1007/BF00192045. [DOI] [PubMed] [Google Scholar]
  18. O'Connor K., Buckley C. M., Hartmans S., Dobson A. D. Possible regulatory role for nonaromatic carbon sources in styrene degradation by Pseudomonas putida CA-3. Appl Environ Microbiol. 1995 Feb;61(2):544–548. doi: 10.1128/aem.61.2.544-548.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Peterson G. L. A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem. 1977 Dec;83(2):346–356. doi: 10.1016/0003-2697(77)90043-4. [DOI] [PubMed] [Google Scholar]
  20. Potts J. R., Clarke P. H. The effect of nitrogen limitation on catabolite repression of amidase, histidase and urocanase in Pseudomonas aeruginosa. J Gen Microbiol. 1976 Apr;93(2):377–387. doi: 10.1099/00221287-93-2-377. [DOI] [PubMed] [Google Scholar]
  21. Ramadan M. A. A variable response of degrading bacteria to phosphorus added to natural water. J Appl Bacteriol. 1994 Apr;76(4):314–319. doi: 10.1111/j.1365-2672.1994.tb01634.x. [DOI] [PubMed] [Google Scholar]
  22. Ramos J. L., Mermod N., Timmis K. N. Regulatory circuits controlling transcription of TOL plasmid operon encoding meta-cleavage pathway for degradation of alkylbenzoates by Pseudomonas. Mol Microbiol. 1987 Nov;1(3):293–300. doi: 10.1111/j.1365-2958.1987.tb01935.x. [DOI] [PubMed] [Google Scholar]
  23. Sala-Trepat J. M., Evans W. C. The meta cleavage of catechol by Azotobacter species. 4-Oxalocrotonate pathway. Eur J Biochem. 1971 Jun 11;20(3):400–413. doi: 10.1111/j.1432-1033.1971.tb01406.x. [DOI] [PubMed] [Google Scholar]
  24. Shaler T. A., Klecka G. M. Effects of dissolved oxygen concentration on biodegradation of 2,4-dichlorophenoxyacetic acid. Appl Environ Microbiol. 1986 May;51(5):950–955. doi: 10.1128/aem.51.5.950-955.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Verdoni N., Aon M. A., Lebeault J. M., Thomas D. Proton motive force, energy recycling by end product excretion, and metabolic uncoupling during anaerobic growth of Pseudomonas mendocina. J Bacteriol. 1990 Dec;172(12):6673–6681. doi: 10.1128/jb.172.12.6673-6681.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Worsey M. J., Williams P. A. Metabolism of toluene and xylenes by Pseudomonas (putida (arvilla) mt-2: evidence for a new function of the TOL plasmid. J Bacteriol. 1975 Oct;124(1):7–13. doi: 10.1128/jb.124.1.7-13.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Zylstra G. J., Olsen R. H., Ballou D. P. Cloning, expression, and regulation of the Pseudomonas cepacia protocatechuate 3,4-dioxygenase genes. J Bacteriol. 1989 Nov;171(11):5907–5914. doi: 10.1128/jb.171.11.5907-5914.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES