Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1996 Feb;62(2):705–711. doi: 10.1128/aem.62.2.705-711.1996

Use of molecular typing methods to trace the dissemination of Listeria monocytogenes in a shrimp processing plant.

M T Destro 1, M F Leitão 1, J M Farber 1
PMCID: PMC167838  PMID: 8593073

Abstract

Molecular typing of bacteria has been widely used in epidemiological studies but not as extensively for tracing the transmission of pathogenic bacteria in food plants. This study was conducted to examine the potential use of two molecular typing methods, random amplified polymorphic DNA (RAPD) analysis and pulsed-field gel electrophoresis (PFGE), to trace Listeria monocytogenes contamination in a shrimp processing plant. Ribotyping and phase typing were also performed on a select number of strains. One hundred fifteen strains of L. monocytogenes collected in different areas of a shrimp processing plant were first serotyped and then subtyped by molecular typing. RAPD and PFGE showed great promise for typing L. monocytogenes isolates since distinguishable and reproducible DNA polymorphisms were obtained. When the composite profile from both (RAPD and PFGE) methods was generated, there was an increase in the discriminatory power to discern differences between strains of L. monocytogenes. The results indicated that environmental strains all fell into composite profile groupings unique to the environment, while strains from both water and utensils shared another composite profile group. L. monocytogenes fresh shrimp isolates belonging to one profile group were found in different areas of the processing line. This same profile group was also present in food handlers from the processing and packaging areas of the plant.

Full Text

The Full Text of this article is available as a PDF (213.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ben Embarek P. K. Presence, detection and growth of Listeria monocytogenes in seafoods: a review. Int J Food Microbiol. 1994 Sep;23(1):17–34. doi: 10.1016/0168-1605(94)90219-4. [DOI] [PubMed] [Google Scholar]
  2. Bibb W. F., Gellin B. G., Weaver R., Schwartz B., Plikaytis B. D., Reeves M. W., Pinner R. W., Broome C. V. Analysis of clinical and food-borne isolates of Listeria monocytogenes in the United States by multilocus enzyme electrophoresis and application of the method to epidemiologic investigations. Appl Environ Microbiol. 1990 Jul;56(7):2133–2141. doi: 10.1128/aem.56.7.2133-2141.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brosch R., Buchrieser C., Sixl-Voigt B., Rocourt J. Use of pulsed field electrophoresis of DNA restriction fragments for comparing Listeria monocytogenes strains isolated from human infections and food in Austria. Zentralbl Bakteriol. 1991 Oct;275(4):557–560. doi: 10.1016/s0934-8840(11)80178-7. [DOI] [PubMed] [Google Scholar]
  4. Brosch R., Chen J., Luchansky J. B. Pulsed-field fingerprinting of listeriae: identification of genomic divisions for Listeria monocytogenes and their correlation with serovar. Appl Environ Microbiol. 1994 Jul;60(7):2584–2592. doi: 10.1128/aem.60.7.2584-2592.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Buchrieser C., Brosch R., Catimel B., Rocourt J. Pulsed-field gel electrophoresis applied for comparing Listeria monocytogenes strains involved in outbreaks. Can J Microbiol. 1993 Apr;39(4):395–401. doi: 10.1139/m93-058. [DOI] [PubMed] [Google Scholar]
  6. Czajka J., Bsat N., Piani M., Russ W., Sultana K., Wiedmann M., Whitaker R., Batt C. A. Differentiation of Listeria monocytogenes and Listeria innocua by 16S rRNA genes and intraspecies discrimination of Listeria monocytogenes strains by random amplified polymorphic DNA polymorphisms. Appl Environ Microbiol. 1993 Jan;59(1):304–308. doi: 10.1128/aem.59.1.304-308.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Farber J. M., Addison C. J. RAPD typing for distinguishing species and strains in the genus Listeria. J Appl Bacteriol. 1994 Sep;77(3):242–250. doi: 10.1111/j.1365-2672.1994.tb03070.x. [DOI] [PubMed] [Google Scholar]
  8. Fistrovici E., Collins-Thompson D. L. Use of plasmid profiles and restriction endonuclease digest in environmental studies of Listeria spp. from raw milk. Int J Food Microbiol. 1990 Jan;10(1):43–50. doi: 10.1016/0168-1605(90)90006-q. [DOI] [PubMed] [Google Scholar]
  9. Haynes K. A., Sullivan D. J., Coleman D. C., Clarke J. C., Emilianus R., Atkinson C., Cann K. J. Involvement of multiple Cryptococcus neoformans strains in a single episode of cryptococcosis and reinfection with novel strains in recurrent infection demonstrated by random amplification of polymorphic DNA and DNA fingerprinting. J Clin Microbiol. 1995 Jan;33(1):99–102. doi: 10.1128/jcm.33.1.99-102.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Jacquet C., Catimel B., Brosch R., Buchrieser C., Dehaumont P., Goulet V., Lepoutre A., Veit P., Rocourt J. Investigations related to the epidemic strain involved in the French listeriosis outbreak in 1992. Appl Environ Microbiol. 1995 Jun;61(6):2242–2246. doi: 10.1128/aem.61.6.2242-2246.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lawrence L. M., Harvey J., Gilmour A. Development of a random amplification of polymorphic DNA typing method for Listeria monocytogenes. Appl Environ Microbiol. 1993 Sep;59(9):3117–3119. doi: 10.1128/aem.59.9.3117-3119.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lennon D., Lewis B., Mantell C., Becroft D., Dove B., Farmer K., Tonkin S., Yeates N., Stamp R., Mickleson K. Epidemic perinatal listeriosis. Pediatr Infect Dis. 1984 Jan-Feb;3(1):30–34. doi: 10.1097/00006454-198401000-00008. [DOI] [PubMed] [Google Scholar]
  13. MacGowan A. P., O'Donaghue K., Nicholls S., McLauchlin J., Bennett P. M., Reeves D. S. Typing of Listeria spp. by random amplified polymorphic DNA (RAPD) analysis. J Med Microbiol. 1993 May;38(5):322–327. doi: 10.1099/00222615-38-5-322. [DOI] [PubMed] [Google Scholar]
  14. Mahalingam S., Cheong Y. M., Kan S., Yassin R. M., Vadivelu J., Pang T. Molecular epidemiologic analysis of Vibrio cholerae O1 isolates by pulsed-field gel electrophoresis. J Clin Microbiol. 1994 Dec;32(12):2975–2979. doi: 10.1128/jcm.32.12.2975-2979.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Mazurier S. I., Audurier A., Marquet-Van der Mee N., Notermans S., Wernars K. A comparative study of randomly amplified polymorphic DNA analysis and conventional phage typing for epidemiological studies of Listeria monocytogenes isolates. Res Microbiol. 1992 Jun;143(5):507–512. doi: 10.1016/0923-2508(92)90097-8. [DOI] [PubMed] [Google Scholar]
  16. McLauchlin J., Audurier A., Taylor A. G. The evaluation of a phage-typing system for Listeria monocytogenes for use in epidemiological studies. J Med Microbiol. 1986 Dec;22(4):357–365. doi: 10.1099/00222615-22-4-357. [DOI] [PubMed] [Google Scholar]
  17. Niederhauser C., Höfelein C., Allmann M., Burkhalter P., Lüthy J., Candrian U. Random amplification of polymorphic bacterial DNA: evaluation of 11 oligonucleotides and application to food contaminated with Listeria monocytogenes. J Appl Bacteriol. 1994 Nov;77(5):574–582. doi: 10.1111/j.1365-2672.1994.tb04404.x. [DOI] [PubMed] [Google Scholar]
  18. Powell N. G., Threlfall E. J., Chart H., Rowe B. Subdivision of Salmonella enteritidis PT 4 by pulsed-field gel electrophoresis: potential for epidemiological surveillance. FEMS Microbiol Lett. 1994 Jun 1;119(1-2):193–198. doi: 10.1111/j.1574-6968.1994.tb06888.x. [DOI] [PubMed] [Google Scholar]
  19. Proctor M. E., Brosch R., Mellen J. W., Garrett L. A., Kaspar C. W., Luchansky J. B. Use of pulsed-field gel electrophoresis to link sporadic cases of invasive listeriosis with recalled chocolate milk. Appl Environ Microbiol. 1995 Aug;61(8):3177–3179. doi: 10.1128/aem.61.8.3177-3179.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Riedo F. X., Pinner R. W., Tosca M. L., Cartter M. L., Graves L. M., Reeves M. W., Weaver R. E., Plikaytis B. D., Broome C. V. A point-source foodborne listeriosis outbreak: documented incubation period and possible mild illness. J Infect Dis. 1994 Sep;170(3):693–696. doi: 10.1093/infdis/170.3.693. [DOI] [PubMed] [Google Scholar]
  21. Wesley I. V., Ashton F. Restriction enzyme analysis of Listeria monocytogenes strains associated with food-borne epidemics. Appl Environ Microbiol. 1991 Apr;57(4):969–975. doi: 10.1128/aem.57.4.969-975.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Williams J. G., Kubelik A. R., Livak K. J., Rafalski J. A., Tingey S. V. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 1990 Nov 25;18(22):6531–6535. doi: 10.1093/nar/18.22.6531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Yan W., Chang N., Taylor D. E. Pulsed-field gel electrophoresis of Campylobacter jejuni and Campylobacter coli genomic DNA and its epidemiologic application. J Infect Dis. 1991 May;163(5):1068–1072. doi: 10.1093/infdis/163.5.1068. [DOI] [PubMed] [Google Scholar]
  24. Young K. A., Power E. G., Dryden M. S., Phillips I. RAPD typing of clinical isolates of Staphylococcus haemolyticus. Lett Appl Microbiol. 1994 Feb;18(2):86–89. doi: 10.1111/j.1472-765x.1994.tb00811.x. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES