Abstract
Oocysts of the protozoan parasite Cryptosporidium parvum are found in most surface waters and can contaminate municipal water supplies, as demonstrated by recent outbreaks of cryptosporidiosis. A method capable of fingerprinting C. parvum isolates from the environment would facilitate the study of epidemiology and transmission cycles and aid in the implementation of preventive measures to reduce water contamination by oocytes. In this study, we report polymorphism in C. parvum isolates on the basis of analysis of random amplified polymorphic DNA and nucleotide sequences in a region of the 18S rRNA and the internal transcribed spacer 1. Isolate-specific primers for these two regions were designed, and PCR tests capable of discriminating between isolates were developed. In both PCR assays, the five C. parvum isolates analyzed segregated into two subgroups. One group consisted of isolates that originated directly from human patients, and the other group had various host origins and had been propagated in laboratory animals. These results demonstrate the feasibility of distinguishing C. parvum isolates by sequence-specific PCR tests.
Full Text
The Full Text of this article is available as a PDF (278.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arrowood M. J., Sterling C. R. Isolation of Cryptosporidium oocysts and sporozoites using discontinuous sucrose and isopycnic Percoll gradients. J Parasitol. 1987 Apr;73(2):314–319. [PubMed] [Google Scholar]
- Cai J., Collins M. D., McDonald V., Thompson D. E. PCR cloning and nucleotide sequence determination of the 18S rRNA genes and internal transcribed spacer 1 of the protozoan parasites Cryptosporidium parvum and Cryptosporidium muris. Biochim Biophys Acta. 1992 Jul 15;1131(3):317–320. doi: 10.1016/0167-4781(92)90032-u. [DOI] [PubMed] [Google Scholar]
- D'Antonio R. G., Winn R. E., Taylor J. P., Gustafson T. L., Current W. L., Rhodes M. M., Gary G. W., Jr, Zajac R. A. A waterborne outbreak of cryptosporidiosis in normal hosts. Ann Intern Med. 1985 Dec;103(6 ):886–888. doi: 10.7326/0003-4819-103-6-886. [DOI] [PubMed] [Google Scholar]
- Gunderson J. H., Sogin M. L., Wollett G., Hollingdale M., de la Cruz V. F., Waters A. P., McCutchan T. F. Structurally distinct, stage-specific ribosomes occur in Plasmodium. Science. 1987 Nov 13;238(4829):933–937. doi: 10.1126/science.3672135. [DOI] [PubMed] [Google Scholar]
- Hayes E. B., Matte T. D., O'Brien T. R., McKinley T. W., Logsdon G. S., Rose J. B., Ungar B. L., Word D. M., Pinsky P. F., Cummings M. L. Large community outbreak of cryptosporidiosis due to contamination of a filtered public water supply. N Engl J Med. 1989 May 25;320(21):1372–1376. doi: 10.1056/NEJM198905253202103. [DOI] [PubMed] [Google Scholar]
- Lally N. C., Baird G. D., McQuay S. J., Wright F., Oliver J. J. A 2359-base pair DNA fragment from Cryptosporidium parvum encoding a repetitive oocyst protein. Mol Biochem Parasitol. 1992 Nov;56(1):69–78. doi: 10.1016/0166-6851(92)90155-d. [DOI] [PubMed] [Google Scholar]
- Mac Kenzie W. R., Hoxie N. J., Proctor M. E., Gradus M. S., Blair K. A., Peterson D. E., Kazmierczak J. J., Addiss D. G., Fox K. R., Rose J. B. A massive outbreak in Milwaukee of cryptosporidium infection transmitted through the public water supply. N Engl J Med. 1994 Jul 21;331(3):161–167. doi: 10.1056/NEJM199407213310304. [DOI] [PubMed] [Google Scholar]
- McCutchan T. F., Li J., McConkey G. A., Rogers M. J., Waters A. P. The cytoplasmic ribosomal RNAs of Plasmodium spp. Parasitol Today. 1995 Apr;11(4):134–138. doi: 10.1016/0169-4758(95)80132-4. [DOI] [PubMed] [Google Scholar]
- Morgan U. M., Constantine C. C., O'Donoghue P., Meloni B. P., O'Brien P. A., Thompson R. C. Molecular characterization of Cryptosporidium isolates from humans and other animals using random amplified polymorphic DNA analysis. Am J Trop Med Hyg. 1995 Jun;52(6):559–564. doi: 10.4269/ajtmh.1995.52.559. [DOI] [PubMed] [Google Scholar]
- Nina J. M., McDonald V., Deer R. M., Wright S. E., Dyson D. A., Chiodini P. L., McAdam K. P. Comparative study of the antigenic composition of oocyst isolates of Cryptosporidium parvum from different hosts. Parasite Immunol. 1992 Mar;14(2):227–232. doi: 10.1111/j.1365-3024.1992.tb00463.x. [DOI] [PubMed] [Google Scholar]
- Ogunkolade B. W., Robinson H. A., McDonald V., Webster K., Evans D. A. Isoenzyme variation within the genus Cryptosporidium. Parasitol Res. 1993;79(5):385–388. doi: 10.1007/BF00931827. [DOI] [PubMed] [Google Scholar]
- Ortega Y. R., Sheehy R. R., Cama V. A., Oishi K. K., Sterling C. R. Restriction fragment length polymorphism analysis of Cryptosporidium parvum isolates of bovine and human origin. J Protozool. 1991 Nov-Dec;38(6):40S–41S. [PubMed] [Google Scholar]
- Smith H. V., Patterson W. J., Hardie R., Greene L. A., Benton C., Tulloch W., Gilmour R. A., Girdwood R. W., Sharp J. C., Forbes G. I. An outbreak of waterborne cryptosporidiosis caused by post-treatment contamination. Epidemiol Infect. 1989 Dec;103(3):703–715. doi: 10.1017/s0950268800031101. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tzipori S., Rand W., Griffiths J., Widmer G., Crabb J. Evaluation of an animal model system for cryptosporidiosis: therapeutic efficacy of paromomycin and hyperimmune bovine colostrum-immunoglobulin. Clin Diagn Lab Immunol. 1994 Jul;1(4):450–463. doi: 10.1128/cdli.1.4.450-463.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Welsh J., Chada K., Dalal S. S., Cheng R., Ralph D., McClelland M. Arbitrarily primed PCR fingerprinting of RNA. Nucleic Acids Res. 1992 Oct 11;20(19):4965–4970. doi: 10.1093/nar/20.19.4965. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Welsh J., Pretzman C., Postic D., Saint Girons I., Baranton G., McClelland M. Genomic fingerprinting by arbitrarily primed polymerase chain reaction resolves Borrelia burgdorferi into three distinct phyletic groups. Int J Syst Bacteriol. 1992 Jul;42(3):370–377. doi: 10.1099/00207713-42-3-370. [DOI] [PubMed] [Google Scholar]