Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1996 Feb;62(2):743–746. doi: 10.1128/aem.62.2.743-746.1996

Genetic manipulation of polyphosphate metabolism affects cadmium tolerance in Escherichia coli.

J D Keasling 1, G A Hupf 1
PMCID: PMC167843  PMID: 8593078

Abstract

The polyphosphate metabolic pathways in Escherichia coli were genetically manipulated to test the effect of polyphosphate on tolerance to cadmium. A polyphosphate kinase (ppk) and polyphosphatase (ppx) mutant strain produced no polyphosphate, whereas the same strain carrying multiple copies of ppk on a high-copy plasmid produced significant quantities. The doubling times of both strains increased with increasing cadmium concentrations. In contrast, the mutant strain carrying multiple copies of ppk and ppx produced 1/20 of the polyphosphate found in the strain carrying multiple copies of ppk only and showed no significant increase in doubling time over the same cadmium concentration range.

Full Text

The Full Text of this article is available as a PDF (201.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahn K., Kornberg A. Polyphosphate kinase from Escherichia coli. Purification and demonstration of a phosphoenzyme intermediate. J Biol Chem. 1990 Jul 15;265(20):11734–11739. [PubMed] [Google Scholar]
  2. Aiking H., Stijnman A., van Garderen C., van Heerikhuizen H., van 't Riet J. Inorganic phosphate accumulation and cadmium detoxification in Klebsiella aerogenes NCTC 418 growing in continuous culture. Appl Environ Microbiol. 1984 Feb;47(2):374–377. doi: 10.1128/aem.47.2.374-377.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Akiyama M., Crooke E., Kornberg A. An exopolyphosphatase of Escherichia coli. The enzyme and its ppx gene in a polyphosphate operon. J Biol Chem. 1993 Jan 5;268(1):633–639. [PubMed] [Google Scholar]
  4. Akiyama M., Crooke E., Kornberg A. The polyphosphate kinase gene of Escherichia coli. Isolation and sequence of the ppk gene and membrane location of the protein. J Biol Chem. 1992 Nov 5;267(31):22556–22561. [PubMed] [Google Scholar]
  5. Archibald F. S., Fridovich I. Investigations of the state of the manganese in Lactobacillus plantarum. Arch Biochem Biophys. 1982 May;215(2):589–596. doi: 10.1016/0003-9861(82)90120-5. [DOI] [PubMed] [Google Scholar]
  6. Daly J. A., Ertingshausen G. Direct method for determining inorganic phosphate in serum with the "CentrifiChem". Clin Chem. 1972 Mar;18(3):263–265. [PubMed] [Google Scholar]
  7. Keasling J. D., Bertsch L., Kornberg A. Guanosine pentaphosphate phosphohydrolase of Escherichia coli is a long-chain exopolyphosphatase. Proc Natl Acad Sci U S A. 1993 Aug 1;90(15):7029–7033. doi: 10.1073/pnas.90.15.7029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Klionsky D. J., Herman P. K., Emr S. D. The fungal vacuole: composition, function, and biogenesis. Microbiol Rev. 1990 Sep;54(3):266–292. doi: 10.1128/mr.54.3.266-292.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Neidhardt F. C., Bloch P. L., Smith D. F. Culture medium for enterobacteria. J Bacteriol. 1974 Sep;119(3):736–747. doi: 10.1128/jb.119.3.736-747.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Nies D. H. Resistance to cadmium, cobalt, zinc, and nickel in microbes. Plasmid. 1992 Jan;27(1):17–28. doi: 10.1016/0147-619x(92)90003-s. [DOI] [PubMed] [Google Scholar]
  11. Peverly J. H., Adamec J. Association of Potassium and Some Other Monovalent Cations with Occurrence of Polyphosphate Bodies in Chlorella pyrenoidosa. Plant Physiol. 1978 Jul;62(1):120–126. doi: 10.1104/pp.62.1.120. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Rachlin J. W., Jensen T. E., Baxter M., Jani V. Utilization of morphometric analysis in evaluating response of Plectonema boryanum (Cyanophyceae) to exposure to eight heavy metals. Arch Environ Contam Toxicol. 1982;11(3):323–333. doi: 10.1007/BF01055209. [DOI] [PubMed] [Google Scholar]
  13. Raguzzi F., Lesuisse E., Crichton R. R. Iron storage in Saccharomyces cerevisiae. FEBS Lett. 1988 Apr 11;231(1):253–258. doi: 10.1016/0014-5793(88)80742-7. [DOI] [PubMed] [Google Scholar]
  14. Scott J. A., Palmer S. J. Sites of cadmium uptake in bacteria used for biosorption. Appl Microbiol Biotechnol. 1990 May;33(2):221–225. doi: 10.1007/BF00176529. [DOI] [PubMed] [Google Scholar]
  15. Sharfstein S. T., Keasling J. D. Polyphosphate metabolism in Escherichia coli. Ann N Y Acad Sci. 1994 Nov 30;745:77–91. doi: 10.1111/j.1749-6632.1994.tb44365.x. [DOI] [PubMed] [Google Scholar]
  16. Urech K., Dürr M., Boller T., Wiemken A., Schwencke J. Localization of polyphosphate in vacuoles of Saccharomyces cerevisiae. Arch Microbiol. 1978 Mar;116(3):275–278. doi: 10.1007/BF00417851. [DOI] [PubMed] [Google Scholar]
  17. van Groenestijn J. W., Vlekke G. J., Anink D. M., Deinema M. H., Zehnder A. J. Role of Cations in Accumulation and Release of Phosphate by Acinetobacter Strain 210A. Appl Environ Microbiol. 1988 Dec;54(12):2894–2901. doi: 10.1128/aem.54.12.2894-2901.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. van Veen H. W., Abee T., Kortstee G. J., Konings W. N., Zehnder A. J. Translocation of metal phosphate via the phosphate inorganic transport system of Escherichia coli. Biochemistry. 1994 Feb 22;33(7):1766–1770. doi: 10.1021/bi00173a020. [DOI] [PubMed] [Google Scholar]
  19. van Veen H. W., Abee T., Kortstee G. J., Pereira H., Konings W. N., Zehnder A. J. Generation of a proton motive force by the excretion of metal-phosphate in the polyphosphate-accumulating Acinetobacter johnsonii strain 210A. J Biol Chem. 1994 Nov 25;269(47):29509–29514. [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES