Abstract
When tested as a microbial model for mammalian drug metabolism, the filamentous fungus Cunninghamella elegans metabolized chlorpromazine and methdilazine within 72 h. The metabolites were extracted by chloroform, separated by high-performance liquid chromatography, and characterized by proton nuclear magnetic resonance, mass, and UV spectroscopic analyses. The major metabolites of chlorpromazine were chlorpromazine sulfoxide (36%), N-desmethylchlorpromazine (11%), N-desmethyl-7-hydroxychlorpromazine (6%), 7-hydroxychlorpromazine sulfoxide (36%), N-hydroxychlorpromazine (11%), 7-hydroxychlorpromazine sulfoxide (5%), and chlorpromazine N-oxide (2%), all of which have been found in animal studies. The major metabolites of methdilazine were 3-hydroxymethdilazine (3%). (18)O(2) labeling experiments indicated that the oxygen atoms in methdilazine sulfoxide, methdilazine N-oxide, and 3-hydroxymethdilazine were all derived from molecular oxygen. The production of methdilazine sulfoxide and 3-hydroxymethdilazine was inhibited by the cytochrome P-450 inhibitors metyrapone and proadifen. An enzyme activity for the sulfoxidation of methdilazine was found in microsomal preparations of C. elegans. These experiments suggest that the sulfoxidation and hydroxylation of methdilazine and chlorpromazine by C. elegans are catalyzed by cytochrome P-450.
Full Text
The Full Text of this article is available as a PDF (203.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alfredsson G., Wiesel F. A., Skett P. Levels of chlorpromazine and its active metabolites in rat brain and the relationship to central monoamine metabolism and prolactin secretion. Psychopharmacology (Berl) 1977 Jun 6;53(1):13–18. doi: 10.1007/BF00426688. [DOI] [PubMed] [Google Scholar]
- Cerniglia C. E., Gibson D. T. Metabolism of naphthalene by cell extracts of Cunninghamella elegans. Arch Biochem Biophys. 1978 Feb;186(1):121–127. doi: 10.1016/0003-9861(78)90471-x. [DOI] [PubMed] [Google Scholar]
- Cerniglia C. E. Microbial metabolism of polycyclic aromatic hydrocarbons. Adv Appl Microbiol. 1984;30:31–71. doi: 10.1016/s0065-2164(08)70052-2. [DOI] [PubMed] [Google Scholar]
- Chakrabarty A. N., Bhattacharya C. P., Dastidar S. G. Antimycobacterial activity of methdilazine (Md), an antimicrobic phenothiazine. APMIS. 1993 Jun;101(6):449–454. doi: 10.1111/j.1699-0463.1993.tb00133.x. [DOI] [PubMed] [Google Scholar]
- Chattopadhyay D., Dastidar S. G., Chakrabarty A. N. Antimicrobial properties of methdilazine and its synergism with antibiotics and some chemotherapeutic agents. Arzneimittelforschung. 1988 Jul;38(7):869–872. [PubMed] [Google Scholar]
- Clark A. M., Hufford C. D. Use of microorganisms for the study of drug metabolism: an update. Med Res Rev. 1991 Sep;11(5):473–501. doi: 10.1002/med.2610110503. [DOI] [PubMed] [Google Scholar]
- Coccia P. F., Westerfeld W. W. The metabolism of chlorpromazine by liver microsomal enzyme systems. J Pharmacol Exp Ther. 1967 Aug;157(2):446–458. [PubMed] [Google Scholar]
- Ferris J. P., MacDonald L. H., Patrie M. A., Martin M. A. Aryl hydrocarbon hydroxylase activity in the fungus Cunninghamella bainieri: evidence for the presence of cytochrome P-450. Arch Biochem Biophys. 1976 Aug;175(2):443–452. doi: 10.1016/0003-9861(76)90532-4. [DOI] [PubMed] [Google Scholar]
- Goldenberg H., Fishman V. Metabolsm of chlorpromazine. V. Confirmation of position 7 as the major site of hydroxylation. Biochem Biophys Res Commun. 1964;14:404–407. doi: 10.1016/0006-291x(64)90076-2. [DOI] [PubMed] [Google Scholar]
- Guengerich F. P., MacDonald T. L. Mechanisms of cytochrome P-450 catalysis. FASEB J. 1990 May;4(8):2453–2459. doi: 10.1096/fasebj.4.8.2185971. [DOI] [PubMed] [Google Scholar]
- Hartmann F., Gruenke L. D., Craig J. C., Bissell D. M. Chlorpromazine metabolism in extracts of liver and small intestine from guinea pig and from man. Drug Metab Dispos. 1983 May-Jun;11(3):244–248. [PubMed] [Google Scholar]
- OMURA T., SATO R. THE CARBON MONOXIDE-BINDING PIGMENT OF LIVER MICROSOMES. I. EVIDENCE FOR ITS HEMOPROTEIN NATURE. J Biol Chem. 1964 Jul;239:2370–2378. [PubMed] [Google Scholar]
- Robinson A. E. Biotransformations in vitro undergone by phenothiazine derivatives in a liver preparation. J Pharm Pharmacol. 1966 Jan;18(1):19–32. doi: 10.1111/j.2042-7158.1966.tb07766.x. [DOI] [PubMed] [Google Scholar]
- Schlenk D., Bevers R. J., Vertino A. M., Cerniglia C. E. P450 catalysed S-oxidation of dibenzothiophene by Cunninghamella elegans. Xenobiotica. 1994 Nov;24(11):1077–1083. doi: 10.3109/00498259409038667. [DOI] [PubMed] [Google Scholar]
- Traficante L. J., Siekierski J., Sakalis G., Gershon S. Sulfoxidation of chlorpromazine and thioridazine by bovine liver--preferential metabolic pathways. Biochem Pharmacol. 1979 Mar 1;28(5):621–626. doi: 10.1016/0006-2952(79)90145-x. [DOI] [PubMed] [Google Scholar]
- Usdin E. The assay of chlorpromazine and metabolites in blood, urine, and other tissues. CRC Crit Rev Clin Lab Sci. 1971 Sep;2(3):347–391. doi: 10.3109/10408367109151312. [DOI] [PubMed] [Google Scholar]
- Wode-Helgodt B., Alfredsson G. Concentrations of chlorpromazine and two of its active metabolites in plasma and cerebrospinal fluid of psychotic patients treated with fixed drug doses. Psychopharmacology (Berl) 1981;73(1):55–62. doi: 10.1007/BF00431102. [DOI] [PubMed] [Google Scholar]
- Yang W., Jiang T., Acosta D., Davis P. J. Microbial models of mammalian metabolism: involvement of cytochrome P450 in the N-demethylation of N-methylcarbazole by Cunninghamella echinulata. Xenobiotica. 1993 Sep;23(9):973–982. doi: 10.3109/00498259309057036. [DOI] [PubMed] [Google Scholar]
- Ziegler D. M. Flavin-containing monooxygenases: catalytic mechanism and substrate specificities. Drug Metab Rev. 1988;19(1):1–32. doi: 10.3109/03602538809049617. [DOI] [PubMed] [Google Scholar]