Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1996 Mar;62(3):815–821. doi: 10.1128/aem.62.3.815-821.1996

An rRNA approach for assessing the role of obligate amino acid-fermenting bacteria in ruminal amino acid deamination.

D O Krause 1, J B Russell 1
PMCID: PMC167848  PMID: 8975611

Abstract

Ruminal amino acid degradation is a nutritionally wasteful process that produces excess ruminal ammonia. Monensin inhibited the growth of monensin-sensitive, obligate amino acid-fermenting bacteria and decreased the ruminal ammonia concentrations of cattle. 16S rRNA probes indicated that monensin inhibited the growth of Peptostreptococcus anaerobius and Clostridium sticklandii in the rumen. Clostridium aminophilum was monensin sensitive in vitro, but C. aminophilum persisted in the rumen after monensin was added to the diet. An in vitro culture system was developed to assess the competition of C. aminophilum, P. anaerobius, and C. sticklandii with predominant ruminal bacteria (PRB). PRB were isolated from a 10(8) dilution of ruminal fluid and maintained as a mixed population with a mixture of carbohydrates. PRB did not hybridize with the probes to C. aminophilum, P. anaerobius, or C. sticklandii. PRB deaminated Trypticase in continuous culture, but the addition of C. aminophilum, P. anaerobius, and C. sticklandii caused a more-than-twofold increase in the steady-state concentration of ammonia. C. aminophilum, P. anaerobius, and C. sticklandii accounted for less than 5% of the total 16S rRNA and microbial protein. Monensin eliminated P. anaerobius and C. sticklandii from continuous cultures, but it could not inhibit C. aminophilum. The monensin resistance of C. aminophilum was a growth rate-dependent, inoculum size-independent phenomenon that could not be maintained in batch culture. On the basis of these results, we concluded that the feed additive monensin cannot entirely counteract the wasteful amino acid deamination of obligate amino acid-fermenting ruminal bacteria.

Full Text

The Full Text of this article is available as a PDF (252.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ANNISON E. F. Nitrogen metabolism in the sheep; protein digestion in the rumen. Biochem J. 1956 Dec;64(4):705–714. doi: 10.1042/bj0640705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bladen H. A., Bryant M. P., Doetsch R. N. A Study of Bacterial Species from the Rumen Which Produce Ammonia from Protein Hydrolyzate. Appl Microbiol. 1961 Mar;9(2):175–180. doi: 10.1128/am.9.2.175-180.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. CHANEY A. L., MARBACH E. P. Modified reagents for determination of urea and ammonia. Clin Chem. 1962 Apr;8:130–132. [PubMed] [Google Scholar]
  4. Chen G. J., Russell J. B. Fermentation of peptides and amino acids by a monensin-sensitive ruminal Peptostreptococcus. Appl Environ Microbiol. 1988 Nov;54(11):2742–2749. doi: 10.1128/aem.54.11.2742-2749.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chen G., Russell J. B. More monensin-sensitive, ammonia-producing bacteria from the rumen. Appl Environ Microbiol. 1989 May;55(5):1052–1057. doi: 10.1128/aem.55.5.1052-1057.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chen G., Russell J. B. Transport and deamination of amino acids by a gram-positive, monensin-sensitive ruminal bacterium. Appl Environ Microbiol. 1990 Jul;56(7):2186–2192. doi: 10.1128/aem.56.7.2186-2192.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chen G., Strobel H. J., Russell J. B., Sniffen C. J. Effect of hydrophobicity of utilization of peptides by ruminal bacteria in vitro. Appl Environ Microbiol. 1987 Sep;53(9):2021–2025. doi: 10.1128/aem.53.9.2021-2025.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chen M., Wolin M. J. Effect of monensin and lasalocid-sodium on the growth of methanogenic and rumen saccharolytic bacteria. Appl Environ Microbiol. 1979 Jul;38(1):72–77. doi: 10.1128/aem.38.1.72-77.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chow J. M., Van Kessel J. A., Russell J. B. Binding of radiolabeled monensin and lasalocid to ruminal microorganisms and feed. J Anim Sci. 1994 Jun;72(6):1630–1635. doi: 10.2527/1994.7261630x. [DOI] [PubMed] [Google Scholar]
  10. Donius D. A., Simpson M. E., Marsh P. B. Effect of monensin fed with forage on digestion and the ruminal ecosystem of steers. J Anim Sci. 1976 Jan;42(1):229–234. doi: 10.2527/jas1976.421229x. [DOI] [PubMed] [Google Scholar]
  11. Hungate R. E. Evolution of a microbial ecologist. Annu Rev Microbiol. 1979;33:1–20. doi: 10.1146/annurev.mi.33.100179.000245. [DOI] [PubMed] [Google Scholar]
  12. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  13. Larsen N., Olsen G. J., Maidak B. L., McCaughey M. J., Overbeek R., Macke T. J., Marsh T. L., Woese C. R. The ribosomal database project. Nucleic Acids Res. 1993 Jul 1;21(13):3021–3023. doi: 10.1093/nar/21.13.3021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lin C., Stahl D. A. Taxon-specific probes for the cellulolytic genus Fibrobacter reveal abundant and novel equine-associated populations. Appl Environ Microbiol. 1995 Apr;61(4):1348–1351. doi: 10.1128/aem.61.4.1348-1351.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Paster B. J., Russell J. B., Yang C. M., Chow J. M., Woese C. R., Tanner R. Phylogeny of the ammonia-producing ruminal bacteria Peptostreptococcus anaerobius, Clostridium sticklandii, and Clostridium aminophilum sp. nov. Int J Syst Bacteriol. 1993 Jan;43(1):107–110. doi: 10.1099/00207713-43-1-107. [DOI] [PubMed] [Google Scholar]
  16. Pressman B. C. Biological applications of ionophores. Annu Rev Biochem. 1976;45:501–530. doi: 10.1146/annurev.bi.45.070176.002441. [DOI] [PubMed] [Google Scholar]
  17. Russell J. B. A proposed mechanism of monensin action in inhibiting ruminal bacterial growth: effects on ion flux and protonmotive force. J Anim Sci. 1987 May;64(5):1519–1525. doi: 10.2527/jas1987.6451519x. [DOI] [PubMed] [Google Scholar]
  18. Russell J. B., Bottje W. G., Cotta M. A. Degradation of protein by mixed cultures of rumen bacteria: identification of Streptococcus bovis as an actively proteolytic rumen bacterium. J Anim Sci. 1981 Jul;53(1):242–252. doi: 10.2527/jas1981.531242x. [DOI] [PubMed] [Google Scholar]
  19. Russell J. B. Fermentation of Peptides by Bacteroides ruminicola B(1)4. Appl Environ Microbiol. 1983 May;45(5):1566–1574. doi: 10.1128/aem.45.5.1566-1574.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Russell J. B., Strobel H. J., Chen G. J. Enrichment and isolation of a ruminal bacterium with a very high specific activity of ammonia production. Appl Environ Microbiol. 1988 Apr;54(4):872–877. doi: 10.1128/aem.54.4.872-877.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Russell J. B., Strobel H. J. Effect of ionophores on ruminal fermentation. Appl Environ Microbiol. 1989 Jan;55(1):1–6. doi: 10.1128/aem.55.1.1-6.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Russell J. B., Strobel H. J. Effects of additives on in vitro ruminal fermentation: a comparison of monensin and bacitracin, another gram-positive antibiotic. J Anim Sci. 1988 Feb;66(2):552–558. doi: 10.2527/jas1988.662552x. [DOI] [PubMed] [Google Scholar]
  23. Stahl D. A., Flesher B., Mansfield H. R., Montgomery L. Use of phylogenetically based hybridization probes for studies of ruminal microbial ecology. Appl Environ Microbiol. 1988 May;54(5):1079–1084. doi: 10.1128/aem.54.5.1079-1084.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Van Nevel C. J., Demeyer D. I. Effect of monensin on rumen metabolism in vitro. Appl Environ Microbiol. 1977 Sep;34(3):251–257. doi: 10.1128/aem.34.3.251-257.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Wallace R. J., Czerkawski J. W., Breckenridge G. Effect of monensin on the fermentation of basal rations in the Rumen Simulation Technique (Rusitec). Br J Nutr. 1981 Jul;46(1):131–148. doi: 10.1079/bjn19810016. [DOI] [PubMed] [Google Scholar]
  26. Wedegaertner T. C., Johnson D. E. Monensin effects on digestibility, methanogenesis and heat increment of a cracked corn-silage diet fed to steers. J Anim Sci. 1983 Jul;57(1):168–177. doi: 10.2527/jas1983.571168x. [DOI] [PubMed] [Google Scholar]
  27. Yang C. M., Russell J. B. Effect of monensin on the specific activity of ammonia production by ruminal bacteria and disappearance of amino nitrogen from the rumen. Appl Environ Microbiol. 1993 Oct;59(10):3250–3254. doi: 10.1128/aem.59.10.3250-3254.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Yang C. M., Russell J. B. Resistance of proline-containing peptides to ruminal degradation in vitro. Appl Environ Microbiol. 1992 Dec;58(12):3954–3958. doi: 10.1128/aem.58.12.3954-3958.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Yang C. M., Russell J. B. The effect of monensin supplementation on ruminal ammonia accumulation in vivo and the numbers of amino acid-fermenting bacteria. J Anim Sci. 1993 Dec;71(12):3470–3476. doi: 10.2527/1993.71123470x. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES