Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1996 Mar;62(3):1058–1064. doi: 10.1128/aem.62.3.1058-1064.1996

Changes in cell morphology of Listeria monocytogenes and Shewanella putrefaciens resulting from the action of protamine.

C Johansen 1, T Gill 1, L Gram 1
PMCID: PMC167869  PMID: 8975598

Abstract

Protamine, which is an antibacterial basic peptide, was shown to alter the cell morphology of Listeria monocytogenes and Shewanella putrefaciens. Atomic force microscopy revealed that protamine smoothed the surface of cells, formed holes in the cell envelope, and caused fusion of S. putrefaciens cells. Immunoelectron microscopy of protamine-treated cells of both L. monocytogenes and S. putrefaciens showed great damage to the cell wall and condensation of the cytoplasm. Respiration of the cells was decreased due to treatment with sublethal concentrations of protamine, probably due to leakage or loss of cell envelope potential. It was concluded that protamine disrupted the outer surface structure and condensed the cytoplasm of sensitive cells and, in sublethal concentrations, altered membrane structures, thereby eliminating respiration.

Full Text

The Full Text of this article is available as a PDF (1.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Antohi S., Popescu A. Lethal effect of protamine and histone on competent Bacillus subtilis cells. Inhibition of genetic transformation by protamine in sublethal concentration. Mol Gen Genet. 1979 Mar 5;170(3):345–349. doi: 10.1007/BF00267068. [DOI] [PubMed] [Google Scholar]
  2. Ben Embarek P. K. Presence, detection and growth of Listeria monocytogenes in seafoods: a review. Int J Food Microbiol. 1994 Sep;23(1):17–34. doi: 10.1016/0168-1605(94)90219-4. [DOI] [PubMed] [Google Scholar]
  3. Christensen B., Fink J., Merrifield R. B., Mauzerall D. Channel-forming properties of cecropins and related model compounds incorporated into planar lipid membranes. Proc Natl Acad Sci U S A. 1988 Jul;85(14):5072–5076. doi: 10.1073/pnas.85.14.5072. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Fujii G., Selsted M. E., Eisenberg D. Defensins promote fusion and lysis of negatively charged membranes. Protein Sci. 1993 Aug;2(8):1301–1312. doi: 10.1002/pro.5560020813. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. HIRSCH J. G. Bactericidal action of histone. J Exp Med. 1958 Dec 1;108(6):925–944. doi: 10.1084/jem.108.6.925. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hultmark D., Engström A., Bennich H., Kapur R., Boman H. G. Insect immunity: isolation and structure of cecropin D and four minor antibacterial components from Cecropia pupae. Eur J Biochem. 1982 Sep;127(1):207–217. doi: 10.1111/j.1432-1033.1982.tb06857.x. [DOI] [PubMed] [Google Scholar]
  7. Johansen C., Gill T., Gram L. Antibacterial effect of protamine assayed by impedimetry. J Appl Bacteriol. 1995 Mar;78(3):297–303. doi: 10.1111/j.1365-2672.1995.tb05029.x. [DOI] [PubMed] [Google Scholar]
  8. Jørgensen B. R., Huss H. H. Growth and activity of Shewanella putrefaciens isolated from spoiling fish. Int J Food Microbiol. 1989 Aug;9(1):51–62. doi: 10.1016/0168-1605(89)90037-8. [DOI] [PubMed] [Google Scholar]
  9. KREBS E. G. The effect of salmine on the activity of phosphorylase. Biochim Biophys Acta. 1954 Dec;15(4):508–515. doi: 10.1016/0006-3002(54)90008-6. [DOI] [PubMed] [Google Scholar]
  10. Kagan B. L., Selsted M. E., Ganz T., Lehrer R. I. Antimicrobial defensin peptides form voltage-dependent ion-permeable channels in planar lipid bilayer membranes. Proc Natl Acad Sci U S A. 1990 Jan;87(1):210–214. doi: 10.1073/pnas.87.1.210. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  12. Lehrer R. I., Lichtenstein A. K., Ganz T. Defensins: antimicrobial and cytotoxic peptides of mammalian cells. Annu Rev Immunol. 1993;11:105–128. doi: 10.1146/annurev.iy.11.040193.000541. [DOI] [PubMed] [Google Scholar]
  13. Lehrer R. I., Szklarek D., Barton A., Ganz T., Hamann K. J., Gleich G. J. Antibacterial properties of eosinophil major basic protein and eosinophil cationic protein. J Immunol. 1989 Jun 15;142(12):4428–4434. [PubMed] [Google Scholar]
  14. Mulholland B., Mellersh A. R. The antimicrobial activity of protamine and polybrene. J Hosp Infect. 1987 Nov;10(3):305–307. doi: 10.1016/0195-6701(87)90014-4. [DOI] [PubMed] [Google Scholar]
  15. Pellegrini A., Thomas U., von Fellenberg R., Wild P. Bactericidal activities of lysozyme and aprotinin against gram-negative and gram-positive bacteria related to their basic character. J Appl Bacteriol. 1992 Mar;72(3):180–187. doi: 10.1111/j.1365-2672.1992.tb01821.x. [DOI] [PubMed] [Google Scholar]
  16. REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Roberts C. J., Williams P. M., Davies M. C., Jackson D. E., Tendler S. J. Atomic force microscopy and scanning tunnelling microscopy: refining techniques for studying biomolecules. Trends Biotechnol. 1994 Apr;12(4):127–132. doi: 10.1016/0167-7799(94)90090-6. [DOI] [PubMed] [Google Scholar]
  18. Roslev P., King G. M. Application of a tetrazolium salt with a water-soluble formazan as an indicator of viability in respiring bacteria. Appl Environ Microbiol. 1993 Sep;59(9):2891–2896. doi: 10.1128/aem.59.9.2891-2896.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Vaara M. Agents that increase the permeability of the outer membrane. Microbiol Rev. 1992 Sep;56(3):395–411. doi: 10.1128/mr.56.3.395-411.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Vaara M., Vaara T. Polycations as outer membrane-disorganizing agents. Antimicrob Agents Chemother. 1983 Jul;24(1):114–122. doi: 10.1128/aac.24.1.114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Viljanen P., Koski P., Vaara M. Effect of small cationic leukocyte peptides (defensins) on the permeability barrier of the outer membrane. Infect Immun. 1988 Sep;56(9):2324–2329. doi: 10.1128/iai.56.9.2324-2329.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. WATSON M. L. Staining of tissue sections for electron microscopy with heavy metals. J Biophys Biochem Cytol. 1958 Jul 25;4(4):475–478. doi: 10.1083/jcb.4.4.475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Watanabe N., Kamei S., Ohkubo A., Yamanaka M., Ohsawa S., Makino K., Tokuda K. Urinary protein as measured with a pyrogallol red-molybdate complex, manually and in a Hitachi 726 automated analyzer. Clin Chem. 1986 Aug;32(8):1551–1554. [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES