Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1996 Mar;62(3):1116–1119. doi: 10.1128/aem.62.3.1116-1119.1996

Cold stress proteins induced in Listeria monocytogenes in response to temperature downshock and growth at low temperatures.

D O Bayles 1, B A Annous 1, B J Wilkinson 1
PMCID: PMC167876  PMID: 8975605

Abstract

Listeria monocytogenes is a food-borne pathogen with the ability to grow at refrigerator temperatures. Twelve cold shock proteins (Csps) with apparent M(r)s of 48,600, 41,000, 21,800, 21,100, 19,700, 19,200, 18,800, 18,800, 17,200, 15,500, 14,500, and 14,400 were induced by cold shocking L. monocytogenes 10403S from 37 to 5 degrees C, as revealed by labeling with L-[35S]methionine followed by two-dimensional gel electrophoresis. Strain SLCC53 showed a similar response. Cold acclimation proteins were observed in cultures of strain 10403S growing at 5 degrees C, and four of these proteins, with apparent M(r)s 48,000, 21,100, 19,700, and 18,800, were also Csps. Two cold-sensitive transposon-induced mutants were labeled less efficiently than the parent strain, but the Csp response of the mutant examined was very similar to that of the parent strain.

Full Text

The Full Text of this article is available as a PDF (481.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Araki T. The effect of temperature shifts on protein synthesis by the psychrophilic bacterium Vibrio sp. strain ANT-300. J Gen Microbiol. 1991 Apr;137(4):817–826. doi: 10.1099/00221287-137-4-817. [DOI] [PubMed] [Google Scholar]
  2. Camilli A., Portnoy A., Youngman P. Insertional mutagenesis of Listeria monocytogenes with a novel Tn917 derivative that allows direct cloning of DNA flanking transposon insertions. J Bacteriol. 1990 Jul;172(7):3738–3744. doi: 10.1128/jb.172.7.3738-3744.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Farber J. M., Peterkin P. I. Listeria monocytogenes, a food-borne pathogen. Microbiol Rev. 1991 Sep;55(3):476–511. doi: 10.1128/mr.55.3.476-511.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Fliss I., Emond E., Simard R. E., Pandian S. A rapid and efficient method of lysis of Listeria and other gram-positive bacteria using mutanolysin. Biotechniques. 1991 Oct;11(4):453, 456-7. [PubMed] [Google Scholar]
  5. Goldstein J., Pollitt N. S., Inouye M. Major cold shock protein of Escherichia coli. Proc Natl Acad Sci U S A. 1990 Jan;87(1):283–287. doi: 10.1073/pnas.87.1.283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hebraud M., Dubois E., Potier P., Labadie J. Effect of growth temperatures on the protein levels in a psychrotrophic bacterium, Pseudomonas fragi. J Bacteriol. 1994 Jul;176(13):4017–4024. doi: 10.1128/jb.176.13.4017-4024.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hochstrasser D. F., Harrington M. G., Hochstrasser A. C., Miller M. J., Merril C. R. Methods for increasing the resolution of two-dimensional protein electrophoresis. Anal Biochem. 1988 Sep;173(2):424–435. doi: 10.1016/0003-2697(88)90209-6. [DOI] [PubMed] [Google Scholar]
  8. Jones P. G., Inouye M. The cold-shock response--a hot topic. Mol Microbiol. 1994 Mar;11(5):811–818. doi: 10.1111/j.1365-2958.1994.tb00359.x. [DOI] [PubMed] [Google Scholar]
  9. Jones P. G., VanBogelen R. A., Neidhardt F. C. Induction of proteins in response to low temperature in Escherichia coli. J Bacteriol. 1987 May;169(5):2092–2095. doi: 10.1128/jb.169.5.2092-2095.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lee S. J., Xie A., Jiang W., Etchegaray J. P., Jones P. G., Inouye M. Family of the major cold-shock protein, CspA (CS7.4), of Escherichia coli, whose members show a high sequence similarity with the eukaryotic Y-box binding proteins. Mol Microbiol. 1994 Mar;11(5):833–839. doi: 10.1111/j.1365-2958.1994.tb00361.x. [DOI] [PubMed] [Google Scholar]
  11. Leimeister-Wächter M., Haffner C., Domann E., Goebel W., Chakraborty T. Identification of a gene that positively regulates expression of listeriolysin, the major virulence factor of listeria monocytogenes. Proc Natl Acad Sci U S A. 1990 Nov;87(21):8336–8340. doi: 10.1073/pnas.87.21.8336. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lottering E. A., Streips U. N. Induction of cold shock proteins in Bacillus subtilis. Curr Microbiol. 1995 Apr;30(4):193–199. doi: 10.1007/BF00293633. [DOI] [PubMed] [Google Scholar]
  13. McGovern V. P., Oliver J. D. Induction of cold-responsive proteins in Vibrio vulnificus. J Bacteriol. 1995 Jul;177(14):4131–4133. doi: 10.1128/jb.177.14.4131-4133.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. McLauchlin J. Listeria monocytogenes, recent advances in the taxonomy and epidemiology of listeriosis in humans. J Appl Bacteriol. 1987 Jul;63(1):1–11. doi: 10.1111/j.1365-2672.1987.tb02411.x. [DOI] [PubMed] [Google Scholar]
  15. Phan-Thanh L., Gormon T. Analysis of heat and cold shock proteins in Listeria by two-dimensional electrophoresis. Electrophoresis. 1995 Mar;16(3):444–450. doi: 10.1002/elps.1150160172. [DOI] [PubMed] [Google Scholar]
  16. Pine L., Malcolm G. B., Brooks J. B., Daneshvar M. I. Physiological studies on the growth and utilization of sugars by Listeria species. Can J Microbiol. 1989 Feb;35(2):245–254. doi: 10.1139/m89-037. [DOI] [PubMed] [Google Scholar]
  17. Ray M. K., Sitaramamma T., Ghandhi S., Shivaji S. Occurrence and expression of cspA, a cold shock gene, in Antarctic psychrotrophic bacteria. FEMS Microbiol Lett. 1994 Feb 1;116(1):55–60. doi: 10.1111/j.1574-6968.1994.tb06675.x. [DOI] [PubMed] [Google Scholar]
  18. Zheng W., Kathariou S. Transposon-induced mutants of Listeria monocytogenes incapable of growth at low temperature (4 degrees C). FEMS Microbiol Lett. 1994 Sep 1;121(3):287–291. doi: 10.1111/j.1574-6968.1994.tb07114.x. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES