Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1996 Apr;62(4):1151–1158. doi: 10.1128/aem.62.4.1151-1158.1996

The ligninolytic system of the white rot fungus Pycnoporus cinnabarinus: purification and characterization of the laccase.

C Eggert 1, U Temp 1, K E Eriksson 1
PMCID: PMC167880  PMID: 8919775

Abstract

The white rot fungus Pycnoporus cinnabarinus was characterized with respect to its set of extracellular phenoloxidases. Laccase was produced as the predominant extracellular phenoloxidase in conjunction with low amounts of an unusual peroxidase. Neither lignin peroxidase nor manganese peroxidase was detected. Laccase was produced constitutively during primary metabolism. Addition of the most effective inducer, 2,5-xylidine, enhanced laccase production ninefold without altering the isoenzyme pattern of the enzyme. Laccase purified to apparent homogeneity was a single polypeptide having a molecular mass of approximately 81,000 Da, as determined by calibrated gel filtration chromatography, and a carbohydrate content of 9%. The enzyme displayed an unusual behavior on isoelectric focusing gels; the activity was split into one major band (pI, 3.7) and several minor bands of decreasing intensity which appeared at regular, closely spaced intervals toward the alkaline end of the gel. Repeated electrophoresis of the major band under identical conditions produced the same pattern, suggesting that the laccase was secreted as a single acidic isoform with a pI of about 3.7 and that the multiband pattern was an artifact produced by electrophoresis. This appeared to be confirmed by N-terminal amino acid sequencing of the purified enzyme, which yielded a single sequence for the first 21 residues. Spectroscopic analysis indicated a typical laccase active site in the P. cinnabarinus enzyme since all three typical Cu(II)-type centers were identified. Substrate specificity and inhibitor studies also indicated the enzyme to be a typical fungal laccase. The N-terminal amino acid sequence of the P. cinnabarinus laccase showed close homology to the N-terminal sequences determined for laccases from Trametes versicolor, Coriolus hirsutus, and an unidentified basidiomycete, PM1. The principal features of the P. cinnabarinus enzyme system, a single predominant laccase and a lack of lignin- or manganese-type peroxidase, make this organism an interesting model for further studies of possible alternative pathways of lignin degradation by white rot fungi.

Full Text

The Full Text of this article is available as a PDF (264.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bollag J. M., Leonowicz A. Comparative studies of extracellular fungal laccases. Appl Environ Microbiol. 1984 Oct;48(4):849–854. doi: 10.1128/aem.48.4.849-854.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bourbonnais R., Paice M. G. Oxidation of non-phenolic substrates. An expanded role for laccase in lignin biodegradation. FEBS Lett. 1990 Jul 2;267(1):99–102. doi: 10.1016/0014-5793(90)80298-w. [DOI] [PubMed] [Google Scholar]
  3. Bourbonnais R., Paice M. G., Reid I. D., Lanthier P., Yaguchi M. Lignin oxidation by laccase isozymes from Trametes versicolor and role of the mediator 2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonate) in kraft lignin depolymerization. Appl Environ Microbiol. 1995 May;61(5):1876–1880. doi: 10.1128/aem.61.5.1876-1880.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  5. Brown J. A., Alic M., Gold M. H. Manganese peroxidase gene transcription in Phanerochaete chrysosporium: activation by manganese. J Bacteriol. 1991 Jul;173(13):4101–4106. doi: 10.1128/jb.173.13.4101-4106.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Coll P. M., Fernández-Abalos J. M., Villanueva J. R., Santamaría R., Pérez P. Purification and characterization of a phenoloxidase (laccase) from the lignin-degrading basidiomycete PM1 (CECT 2971). Appl Environ Microbiol. 1993 Aug;59(8):2607–2613. doi: 10.1128/aem.59.8.2607-2613.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Froehner S. C., Eriksson K. E. Purification and properties of Neurospora crassa laccase. J Bacteriol. 1974 Oct;120(1):458–465. doi: 10.1128/jb.120.1.458-465.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fukushima Y., Kirk T. K. Laccase component of the Ceriporiopsis subvermispora lignin-degrading system. Appl Environ Microbiol. 1995 Mar;61(3):872–876. doi: 10.1128/aem.61.3.872-876.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Germann U. A., Müller G., Hunziker P. E., Lerch K. Characterization of two allelic forms of Neurospora crassa laccase. Amino- and carboxyl-terminal processing of a precursor. J Biol Chem. 1988 Jan 15;263(2):885–896. [PubMed] [Google Scholar]
  10. Glenn J. K., Morgan M. A., Mayfield M. B., Kuwahara M., Gold M. H. An extracellular H2O2-requiring enzyme preparation involved in lignin biodegradation by the white rot basidiomycete Phanerochaete chrysosporium. Biochem Biophys Res Commun. 1983 Aug 12;114(3):1077–1083. doi: 10.1016/0006-291x(83)90672-1. [DOI] [PubMed] [Google Scholar]
  11. Glenn J. K., Morgan M. A., Mayfield M. B., Kuwahara M., Gold M. H. An extracellular H2O2-requiring enzyme preparation involved in lignin biodegradation by the white rot basidiomycete Phanerochaete chrysosporium. Biochem Biophys Res Commun. 1983 Aug 12;114(3):1077–1083. doi: 10.1016/0006-291x(83)90672-1. [DOI] [PubMed] [Google Scholar]
  12. Jonsson M., Pettersson E., Reinhammar B. Isoelectric fractionation, analysis, and characterization of ampholytes in natural pH gradients. VII. The isoelectric spectra of fungal laccase A and B. Acta Chem Scand. 1968;22(7):2135–2140. doi: 10.3891/acta.chem.scand.22-2135. [DOI] [PubMed] [Google Scholar]
  13. Karhunen E., Niku-Paavola M. L., Viikari L., Haltia T., van der Meer R. A., Duine J. A. A novel combination of prosthetic groups in a fungal laccase; PQQ and two copper atoms. FEBS Lett. 1990 Jul 2;267(1):6–8. doi: 10.1016/0014-5793(90)80273-l. [DOI] [PubMed] [Google Scholar]
  14. Kojima Y., Tsukuda Y., Kawai Y., Tsukamoto A., Sugiura J., Sakaino M., Kita Y. Cloning, sequence analysis, and expression of ligninolytic phenoloxidase genes of the white-rot basidiomycete Coriolus hirsutus. J Biol Chem. 1990 Sep 5;265(25):15224–15230. [PubMed] [Google Scholar]
  15. Merkle R. K., Poppe I. Carbohydrate composition analysis of glycoconjugates by gas-liquid chromatography/mass spectrometry. Methods Enzymol. 1994;230:1–15. doi: 10.1016/0076-6879(94)30003-8. [DOI] [PubMed] [Google Scholar]
  16. Molitoris H. P., Reinhammar B. The phenoloxidases of the ascomycete Podospora anserina. XI. The state of copper of laccases I, II and III. Biochim Biophys Acta. 1975 Apr 29;386(2):493–502. doi: 10.1016/0005-2795(75)90292-5. [DOI] [PubMed] [Google Scholar]
  17. Perry C. R., Matcham S. E., Wood D. A., Thurston C. F. The structure of laccase protein and its synthesis by the commercial mushroom Agaricus bisporus. J Gen Microbiol. 1993 Jan;139(1):171–178. doi: 10.1099/00221287-139-1-171. [DOI] [PubMed] [Google Scholar]
  18. Périé F. H., Gold M. H. Manganese regulation of manganese peroxidase expression and lignin degradation by the white rot fungus Dichomitus squalens. Appl Environ Microbiol. 1991 Aug;57(8):2240–2245. doi: 10.1128/aem.57.8.2240-2245.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Saloheimo M., Niku-Paavola M. L., Knowles J. K. Isolation and structural analysis of the laccase gene from the lignin-degrading fungus Phlebia radiata. J Gen Microbiol. 1991 Jul;137(7):1537–1544. doi: 10.1099/00221287-137-7-1537. [DOI] [PubMed] [Google Scholar]
  20. Sannia G., Limongi P., Cocca E., Buonocore F., Nitti G., Giardina P. Purification and characterization of a veratryl alcohol oxidase enzyme from the lignin degrading basidiomycete Pleurotus ostreatus. Biochim Biophys Acta. 1991 Jan 23;1073(1):114–119. doi: 10.1016/0304-4165(91)90190-r. [DOI] [PubMed] [Google Scholar]
  21. Schägger H., von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem. 1987 Nov 1;166(2):368–379. doi: 10.1016/0003-2697(87)90587-2. [DOI] [PubMed] [Google Scholar]
  22. Srinivasan C., Dsouza T. M., Boominathan K., Reddy C. A. Demonstration of Laccase in the White Rot Basidiomycete Phanerochaete chrysosporium BKM-F1767. Appl Environ Microbiol. 1995 Dec;61(12):4274–4277. doi: 10.1128/aem.61.12.4274-4277.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Sterjiades R., Dean J. F., Eriksson K. E. Laccase from Sycamore Maple (Acer pseudoplatanus) Polymerizes Monolignols. Plant Physiol. 1992 Jul;99(3):1162–1168. doi: 10.1104/pp.99.3.1162. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Tien M., Kirk T. K. Lignin-degrading enzyme from Phanerochaete chrysosporium: Purification, characterization, and catalytic properties of a unique H(2)O(2)-requiring oxygenase. Proc Natl Acad Sci U S A. 1984 Apr;81(8):2280–2284. doi: 10.1073/pnas.81.8.2280. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Williamson P. R. Biochemical and molecular characterization of the diphenol oxidase of Cryptococcus neoformans: identification as a laccase. J Bacteriol. 1994 Feb;176(3):656–664. doi: 10.1128/jb.176.3.656-664.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. de Jong E., Field J. A., de Bont J. A. Evidence for a new extracellular peroxidase. Manganese-inhibited peroxidase from the white-rot fungus Bjerkandera sp. BOS 55. FEBS Lett. 1992 Mar 24;299(1):107–110. doi: 10.1016/0014-5793(92)80111-s. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES