Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1996 Apr;62(4):1329–1335. doi: 10.1128/aem.62.4.1329-1335.1996

Cloning of a cDNA encoding cellobiose dehydrogenase, a hemoflavoenzyme from Phanerochaete chrysosporium.

B Li 1, S R Nagalla 1, V Renganathan 1
PMCID: PMC167898  PMID: 8919793

Abstract

Cellobiose dehydrogenase (CDH) is an extracellular hemoflavoenzyme produced by cellulose-degrading cultures of the wood-degrading basidiomycete Phanerochaete chrysosporium. CDH contains one flavin adenine dinucleotide (FAD) and one heme b per molecule, and it oxidizes cellobiose to cellobionolactone. In this report, a 2.4-kb cDNA encoding CDH was isolated by screening an expression library of P. chrysosporium OGC101 with a CDH-specific polyclonal antibody. The cDNA encodes a 755-amino-acid protein with a predicted mass of 80,115 Da. Sequence analysis suggests that the heme domain is located at the N terminus and that the falvin domain is located at the C terminus. The flavin domain shows a beta 1-alpha A-beta 2 motif for FAD binding and has high sequence similarity to several FAD-dependent enzymes. Little sequence similarity to hemoflavoenzymes is found. CDH binds to cellulose similarly to cellulases. However, little sequence similarity is observed with the conserved cellulose-binding sequences of cellulases. This suggests that CDH might possess a specific sequence for cellulose binding which is different from that of cellulases. Northern (RNA) blot analysis of total RNA from cellulose-, glucose-, and cellobiose-grown P. chrysosporium indicated that CDH mRNA is produced only in cellulose-grown cells. This suggests that CDH expression is regulated at the transcriptional level by either cellulose or one of its degradation products. Southern blot analysis suggests the presence of only a single gene for CDH in P. chrysosporium OGC101.

Full Text

The Full Text of this article is available as a PDF (370.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alic M., Letzring C., Gold M. H. Mating System and Basidiospore Formation in the Lignin-Degrading Basidiomycete Phanerochaete chrysosporium. Appl Environ Microbiol. 1987 Jul;53(7):1464–1469. doi: 10.1128/aem.53.7.1464-1469.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aviv H., Leder P. Purification of biologically active globin messenger RNA by chromatography on oligothymidylic acid-cellulose. Proc Natl Acad Sci U S A. 1972 Jun;69(6):1408–1412. doi: 10.1073/pnas.69.6.1408. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ayers A. R., Ayers S. B., Eriksson K. E. Cellobiose oxidase, purification and partial characterization of a hemoprotein from Sporotrichum pulverulentum. Eur J Biochem. 1978 Sep 15;90(1):171–181. doi: 10.1111/j.1432-1033.1978.tb12588.x. [DOI] [PubMed] [Google Scholar]
  4. Ballance D. J. Sequences important for gene expression in filamentous fungi. Yeast. 1986 Dec;2(4):229–236. doi: 10.1002/yea.320020404. [DOI] [PubMed] [Google Scholar]
  5. Bao W., Renganathan V. Cellobiose oxidase of Phanerochaete chrysosporium enhances crystalline cellulose degradation by cellulases. FEBS Lett. 1992 May 4;302(1):77–80. doi: 10.1016/0014-5793(92)80289-s. [DOI] [PubMed] [Google Scholar]
  6. Bao W., Usha S. N., Renganathan V. Purification and characterization of cellobiose dehydrogenase, a novel extracellular hemoflavoenzyme from the white-rot fungus Phanerochaete chrysosporium. Arch Biochem Biophys. 1993 Feb 1;300(2):705–713. doi: 10.1006/abbi.1993.1098. [DOI] [PubMed] [Google Scholar]
  7. Bause E. Structural requirements of N-glycosylation of proteins. Studies with proline peptides as conformational probes. Biochem J. 1983 Feb 1;209(2):331–336. doi: 10.1042/bj2090331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Birnboim H. C., Doly J. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 1979 Nov 24;7(6):1513–1523. doi: 10.1093/nar/7.6.1513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Bredt D. S., Hwang P. M., Glatt C. E., Lowenstein C., Reed R. R., Snyder S. H. Cloned and expressed nitric oxide synthase structurally resembles cytochrome P-450 reductase. Nature. 1991 Jun 27;351(6329):714–718. doi: 10.1038/351714a0. [DOI] [PubMed] [Google Scholar]
  10. Canevascini G., Borer P., Dreyer J. L. Cellobiose dehydrogenases of Sporotrichum (Chrysosporium) thermophile. Eur J Biochem. 1991 May 23;198(1):43–52. doi: 10.1111/j.1432-1033.1991.tb15984.x. [DOI] [PubMed] [Google Scholar]
  11. Chen L., Liu M. Y., LeGall J., Fareleira P., Santos H., Xavier A. V. Rubredoxin oxidase, a new flavo-hemo-protein, is the site of oxygen reduction to water by the "strict anaerobe" Desulfovibrio gigas. Biochem Biophys Res Commun. 1993 May 28;193(1):100–105. doi: 10.1006/bbrc.1993.1595. [DOI] [PubMed] [Google Scholar]
  12. Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
  13. Covert S. F., Bolduc J., Cullen D. Genomic organization of a cellulase gene family in Phanerochaete chrysosporium. Curr Genet. 1992 Nov;22(5):407–413. doi: 10.1007/BF00352442. [DOI] [PubMed] [Google Scholar]
  14. Covert S. F., Vanden Wymelenberg A., Cullen D. Structure, organization, and transcription of a cellobiohydrolase gene cluster from Phanerochaete chrysosporium. Appl Environ Microbiol. 1992 Jul;58(7):2168–2175. doi: 10.1128/aem.58.7.2168-2175.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Cox M. C., Rogers M. S., Cheesman M., Jones G. D., Thomson A. J., Wilson M. T., Moore G. R. Spectroscopic identification of the haem ligands of cellobiose oxidase. FEBS Lett. 1992 Jul 28;307(2):233–236. doi: 10.1016/0014-5793(92)80774-b. [DOI] [PubMed] [Google Scholar]
  16. Frederick K. R., Tung J., Emerick R. S., Masiarz F. R., Chamberlain S. H., Vasavada A., Rosenberg S., Chakraborty S., Schopfer L. M., Schopter L. M. Glucose oxidase from Aspergillus niger. Cloning, gene sequence, secretion from Saccharomyces cerevisiae and kinetic analysis of a yeast-derived enzyme. J Biol Chem. 1990 Mar 5;265(7):3793–3802. [PubMed] [Google Scholar]
  17. Gilkes N. R., Henrissat B., Kilburn D. G., Miller R. C., Jr, Warren R. A. Domains in microbial beta-1, 4-glycanases: sequence conservation, function, and enzyme families. Microbiol Rev. 1991 Jun;55(2):303–315. doi: 10.1128/mr.55.2.303-315.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Gubler U., Hoffman B. J. A simple and very efficient method for generating cDNA libraries. Gene. 1983 Nov;25(2-3):263–269. doi: 10.1016/0378-1119(83)90230-5. [DOI] [PubMed] [Google Scholar]
  19. Guiard B. Structure, expression and regulation of a nuclear gene encoding a mitochondrial protein: the yeast L(+)-lactate cytochrome c oxidoreductase (cytochrome b2). EMBO J. 1985 Dec 1;4(12):3265–3272. doi: 10.1002/j.1460-2075.1985.tb04076.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Habu N., Samejima M., Dean J. F., Eriksson K. E. Release of the FAD domain from cellobiose oxidase by proteases from cellulolytic cultures of Phanerochaete chrysosporium. FEBS Lett. 1993 Jul 26;327(2):161–164. doi: 10.1016/0014-5793(93)80162-n. [DOI] [PubMed] [Google Scholar]
  21. Henriksson G., Pettersson G., Johansson G., Ruiz A., Uzcategui E. Cellobiose oxidase from Phanerochaete chrysosporium can be cleaved by papain into two domains. Eur J Biochem. 1991 Feb 26;196(1):101–106. doi: 10.1111/j.1432-1033.1991.tb15791.x. [DOI] [PubMed] [Google Scholar]
  22. Kornfeld R., Kornfeld S. Assembly of asparagine-linked oligosaccharides. Annu Rev Biochem. 1985;54:631–664. doi: 10.1146/annurev.bi.54.070185.003215. [DOI] [PubMed] [Google Scholar]
  23. Kremer S. M., Wood P. M. Evidence that cellobiose oxidase from Phanerochaete chrysosporium is primarily an Fe(III) reductase. Kinetic comparison with neutrophil NADPH oxidase and yeast flavocytochrome b2. Eur J Biochem. 1992 Apr 1;205(1):133–138. doi: 10.1111/j.1432-1033.1992.tb16760.x. [DOI] [PubMed] [Google Scholar]
  24. Ledeboer A. M., Edens L., Maat J., Visser C., Bos J. W., Verrips C. T., Janowicz Z., Eckart M., Roggenkamp R., Hollenberg C. P. Molecular cloning and characterization of a gene coding for methanol oxidase in Hansenula polymorpha. Nucleic Acids Res. 1985 May 10;13(9):3063–3082. doi: 10.1093/nar/13.9.3063. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lymar E. S., Li B., Renganathan V. Purification and Characterization of a Cellulose-Binding (beta)-Glucosidase from Cellulose-Degrading Cultures of Phanerochaete chrysosporium. Appl Environ Microbiol. 1995 Aug;61(8):2976–2980. doi: 10.1128/aem.61.8.2976-2980.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Marletta M. A. Nitric oxide synthase structure and mechanism. J Biol Chem. 1993 Jun 15;268(17):12231–12234. [PubMed] [Google Scholar]
  27. Nagalla S. R., Barry B. J., Spindel E. R. Cloning of complementary DNAs encoding the amphibian bombesin-like peptides Phe8 and Leu8 phyllolitorin from Phyllomedusa sauvagei: potential role of U to C RNA editing in generating neuropeptide diversity. Mol Endocrinol. 1994 Aug;8(8):943–951. doi: 10.1210/mend.8.8.7997236. [DOI] [PubMed] [Google Scholar]
  28. Narhi L. O., Fulco A. J. Characterization of a catalytically self-sufficient 119,000-dalton cytochrome P-450 monooxygenase induced by barbiturates in Bacillus megaterium. J Biol Chem. 1986 Jun 5;261(16):7160–7169. [PubMed] [Google Scholar]
  29. Pealing S. L., Black A. C., Manson F. D., Ward F. B., Chapman S. K., Reid G. A. Sequence of the gene encoding flavocytochrome c from Shewanella putrefaciens: a tetraheme flavoenzyme that is a soluble fumarate reductase related to the membrane-bound enzymes from other bacteria. Biochemistry. 1992 Dec 8;31(48):12132–12140. doi: 10.1021/bi00163a023. [DOI] [PubMed] [Google Scholar]
  30. Raices M., Paifer E., Cremata J., Montesino R., Ståhlberg J., Divne C., Szabó I. J., Henriksson G., Johansson G., Pettersson G. Cloning and characterization of a cDNA encoding a cellobiose dehydrogenase from the white rot fungus Phanerochaete chrysosporium. FEBS Lett. 1995 Aug 7;369(2-3):233–238. doi: 10.1016/0014-5793(95)00758-2. [DOI] [PubMed] [Google Scholar]
  31. Ritch T. G., Jr, Gold M. H. Characterization of a highly expressed lignin peroxidase-encoding gene from the basidiomycete Phanerochaete chrysosporium. Gene. 1992 Sep 1;118(1):73–80. doi: 10.1016/0378-1119(92)90250-s. [DOI] [PubMed] [Google Scholar]
  32. Ruettinger R. T., Wen L. P., Fulco A. J. Coding nucleotide, 5' regulatory, and deduced amino acid sequences of P-450BM-3, a single peptide cytochrome P-450:NADPH-P-450 reductase from Bacillus megaterium. J Biol Chem. 1989 Jul 5;264(19):10987–10995. [PubMed] [Google Scholar]
  33. Samejima M., Eriksson K. E. A comparison of the catalytic properties of cellobiose:quinone oxidoreductase and cellobiose oxidase from Phanerochaete chrysosporium. Eur J Biochem. 1992 Jul 1;207(1):103–107. doi: 10.1111/j.1432-1033.1992.tb17026.x. [DOI] [PubMed] [Google Scholar]
  34. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Schmidhalter D. R., Canevascini G. Isolation and characterization of the cellobiose dehydrogenase from the brown-rot fungus Coniophora puteana (Schum ex Fr.) Karst. Arch Biochem Biophys. 1993 Feb 1;300(2):559–563. doi: 10.1006/abbi.1993.1077. [DOI] [PubMed] [Google Scholar]
  36. Sims P. F., Soares-Felipe M. S., Wang Q., Gent M. E., Tempelaars C., Broda P. Differential expression of multiple exo-cellobiohydrolase I-like genes in the lignin-degrading fungus Phanerochaete chrysosporium. Mol Microbiol. 1994 Apr;12(2):209–216. doi: 10.1111/j.1365-2958.1994.tb01010.x. [DOI] [PubMed] [Google Scholar]
  37. Strauss E. C., Kobori J. A., Siu G., Hood L. E. Specific-primer-directed DNA sequencing. Anal Biochem. 1986 Apr;154(1):353–360. doi: 10.1016/0003-2697(86)90536-1. [DOI] [PubMed] [Google Scholar]
  38. Tabor C. W., Kellogg P. D. Identification of flavin adenine dinucleotide and heme in a homogeneous spermidine dehydrogenase from Serratia marcescens. J Biol Chem. 1970 Oct 25;245(20):5424–5433. [PubMed] [Google Scholar]
  39. Westermark U., Eriksson K. E. Purification and properties of cellobiose: quinone oxidoreductase from Sporotrichum pulverulentum. Acta Chem Scand B. 1975;29(4):419–424. [PubMed] [Google Scholar]
  40. Wierenga R. K., Terpstra P., Hol W. G. Prediction of the occurrence of the ADP-binding beta alpha beta-fold in proteins, using an amino acid sequence fingerprint. J Mol Biol. 1986 Jan 5;187(1):101–107. doi: 10.1016/0022-2836(86)90409-2. [DOI] [PubMed] [Google Scholar]
  41. Xia Z. X., Shamala N., Bethge P. H., Lim L. W., Bellamy H. D., Xuong N. H., Lederer F., Mathews F. S. Three-dimensional structure of flavocytochrome b2 from baker's yeast at 3.0-A resolution. Proc Natl Acad Sci U S A. 1987 May;84(9):2629–2633. doi: 10.1073/pnas.84.9.2629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Yasin M., Fewson C. A. L(+)-Mandelate dehydrogenase from Rhodotorula graminis: purification, partial characterization and identification as a flavocytochrome b. Biochem J. 1993 Jul 15;293(Pt 2):455–460. doi: 10.1042/bj2930455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. de Boer H. A., Zhang Y. Z., Collins C., Reddy C. A. Analysis of nucleotide sequences of two ligninase cDNAs from a white-rot filamentous fungus, Phanerochaete chrysosporium. Gene. 1987;60(1):93–102. doi: 10.1016/0378-1119(87)90217-4. [DOI] [PubMed] [Google Scholar]
  44. van Beilen J. B., Eggink G., Enequist H., Bos R., Witholt B. DNA sequence determination and functional characterization of the OCT-plasmid-encoded alkJKL genes of Pseudomonas oleovorans. Mol Microbiol. 1992 Nov;6(21):3121–3136. doi: 10.1111/j.1365-2958.1992.tb01769.x. [DOI] [PubMed] [Google Scholar]
  45. von Heijne G. A new method for predicting signal sequence cleavage sites. Nucleic Acids Res. 1986 Jun 11;14(11):4683–4690. doi: 10.1093/nar/14.11.4683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. von Heijne G. Signal sequences. The limits of variation. J Mol Biol. 1985 Jul 5;184(1):99–105. doi: 10.1016/0022-2836(85)90046-4. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES