Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1996 Apr;62(4):1354–1363. doi: 10.1128/aem.62.4.1354-1363.1996

Differentiation and grouping of isolates of the Ganoderma lucidum complex by random amplified polymorphic DNA-PCR compared with grouping on the basis of internal transcribed spacer sequences.

R S Hseu 1, H H Wang 1, H F Wang 1, J M Moncalvo 1
PMCID: PMC167902  PMID: 8919797

Abstract

Laccate polypores of the Ganoderma lucidum species complex are widespread white rot fungi of economic importance, but isolates cannot be identified by traditional taxonomic methods. Parsimony analysis of nucleotide sequences from the internal transcribed spacers (ITS) of the ribosomal gene (rDNA) distinguished six lineages in this species complex. Each ITS lineage may represent one or more putative species. While some isolates have identical ITS sequences, all of them could be clearly differentiated by genetic fingerprinting using random amplified polymorphic DNA (RAPD). To investigate the suitability of RAPD markers for taxonomic identification and grouping of isolates of the G. lucidum complex, RAPD fragments (RAPDs) were used as phenotypic characters in numerical and parsimony analyses. Results show that data from RAPDS do not distinguish the same clades as ITS data do. Groupings based on analysis of RAPD data were very sensitive to the choice of the grouping method used, and no consistent grouping of isolates could be proposed. However, analysis with RAPDs did resolve several robust terminal clades containing putatively conspecific isolates, suggesting that RAPDs might be helpful for systematics at the lower taxonomic levels that are unresolved by ITS sequence data. The limitations of RAPDs for systematics are briefly discussed. The conclusion of this study is that ITS sequences can be used to identify isolates of the G. lucidum complex, whereas RAPDs can be used to differentiate between isolates having identical ITS sequences. The practical implications of these results are briefly illustrated.

Full Text

The Full Text of this article is available as a PDF (356.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adaskaveg J. E., Gilbertson R. L., Blanchette R. A. Comparative studies of delignification caused by ganoderma species. Appl Environ Microbiol. 1990 Jun;56(6):1932–1943. doi: 10.1128/aem.56.6.1932-1943.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ellsworth D. L., Rittenhouse K. D., Honeycutt R. L. Artifactual variation in randomly amplified polymorphic DNA banding patterns. Biotechniques. 1993 Feb;14(2):214–217. [PubMed] [Google Scholar]
  3. Hamelin R. C., Ouellette G. B., Bernier L. Identification of Gremmeniella abietina Races with Random Amplified Polymorphic DNA Markers. Appl Environ Microbiol. 1993 Jun;59(6):1752–1755. doi: 10.1128/aem.59.6.1752-1755.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Jong S. C., Birmingham J. M. Medicinal benefits of the mushroom Ganoderma. Adv Appl Microbiol. 1992;37:101–134. doi: 10.1016/s0065-2164(08)70253-3. [DOI] [PubMed] [Google Scholar]
  5. Kazan K., Manners J. M., Cameron D. F. Genetic relationships and variation in the Stylosanthes guianensis species complex assessed by random amplified polymorphic DNA. Genome. 1993 Feb;36(1):43–49. doi: 10.1139/g93-006. [DOI] [PubMed] [Google Scholar]
  6. Kersulyte D., Woods J. P., Keath E. J., Goldman W. E., Berg D. E. Diversity among clinical isolates of Histoplasma capsulatum detected by polymerase chain reaction with arbitrary primers. J Bacteriol. 1992 Nov;174(22):7075–7079. doi: 10.1128/jb.174.22.7075-7079.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Khush R. S., Becker E., Wach M. DNA amplification polymorphisms of the cultivated mushroom Agaricus bisporus. Appl Environ Microbiol. 1992 Sep;58(9):2971–2977. doi: 10.1128/aem.58.9.2971-2977.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Manulis S., Valinsky L., Lichter A., Gabriel D. W. Sensitive and specific detection of Xanthomonas campestris pv. pelargonii with DNA primers and probes identified by random amplified polymorphic DNA analysis. Appl Environ Microbiol. 1994 Nov;60(11):4094–4099. doi: 10.1128/aem.60.11.4094-4099.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Meyer W., Mitchell T. G., Freedman E. Z., Vilgalys R. Hybridization probes for conventional DNA fingerprinting used as single primers in the polymerase chain reaction to distinguish strains of Cryptococcus neoformans. J Clin Microbiol. 1993 Sep;31(9):2274–2280. doi: 10.1128/jcm.31.9.2274-2280.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Muralidharan K., Wakeland E. K. Concentration of primer and template qualitatively affects products in random-amplified polymorphic DNA PCR. Biotechniques. 1993 Mar;14(3):362–364. [PubMed] [Google Scholar]
  11. Nei M., Li W. H. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci U S A. 1979 Oct;76(10):5269–5273. doi: 10.1073/pnas.76.10.5269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Saiki R. K., Gelfand D. H., Stoffel S., Scharf S. J., Higuchi R., Horn G. T., Mullis K. B., Erlich H. A. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 1988 Jan 29;239(4839):487–491. doi: 10.1126/science.2448875. [DOI] [PubMed] [Google Scholar]
  13. Sullivan J., Holsinger K. E., Simon C. Among-site rate variation and phylogenetic analysis of 12S rRNA in sigmodontine rodents. Mol Biol Evol. 1995 Nov;12(6):988–1001. doi: 10.1093/oxfordjournals.molbev.a040292. [DOI] [PubMed] [Google Scholar]
  14. Sültmann H., Mayer W. E., Figueroa F., Tichy H., Klein J. Phylogenetic analysis of cichlid fishes using nuclear DNA markers. Mol Biol Evol. 1995 Nov;12(6):1033–1047. doi: 10.1093/oxfordjournals.molbev.a040279. [DOI] [PubMed] [Google Scholar]
  15. Welsh J., McClelland M. Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res. 1990 Dec 25;18(24):7213–7218. doi: 10.1093/nar/18.24.7213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Welsh J., Pretzman C., Postic D., Saint Girons I., Baranton G., McClelland M. Genomic fingerprinting by arbitrarily primed polymerase chain reaction resolves Borrelia burgdorferi into three distinct phyletic groups. Int J Syst Bacteriol. 1992 Jul;42(3):370–377. doi: 10.1099/00207713-42-3-370. [DOI] [PubMed] [Google Scholar]
  17. Williams J. G., Kubelik A. R., Livak K. J., Rafalski J. A., Tingey S. V. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 1990 Nov 25;18(22):6531–6535. doi: 10.1093/nar/18.22.6531. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES