Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1996 May;62(5):1537–1543. doi: 10.1128/aem.62.5.1537-1543.1996

Domain III substitution in Bacillus thuringiensis delta-endotoxin CryIA(b) results in superior toxicity for Spodoptera exigua and altered membrane protein recognition.

R A de Maagd 1, M S Kwa 1, H van der Klei 1, T Yamamoto 1, B Schipper 1, J M Vlak 1, W J Stiekema 1, D Bosch 1
PMCID: PMC167929  PMID: 8633853

Abstract

To test our hypothesis that substitution of domain III of Bacillus thuringiensis delta-endotoxin (Cry) proteins might improve toxicity to pest insects, e.g., Spodoptera exigua, in vivo recombination was used to produce a number of cryIA(b)-cryIC hybrid genes. A rapid screening assay was subsequently exploited to select hybrid genes encoding soluble protoxins. Screening of 120 recombinants yielded two different hybrid genes encoding soluble proteins with domains I and II of CryIA(b) and domain III of CryIC. These proteins differed by only one amino acid residue. Both hybrid protoxins gave a protease-resistant toxin upon in vitro activation by trypsin. Bioassays showed that one of these CryIA(b)-CryIC hybrid proteins (H04) was highly toxic to S. exigua compared with the parental CryIA(b) protein and significantly more toxic than CryIC. In semiquantitative binding studies with biotin-labelled toxins and intact brush border membrane vesicles of S. exigua, this domain III substitution appeared not to affect binding-site specificity. However, binding to a 200-kDa protein by CryIA(b) in preparations of solubilized and blotted brush border membrane vesicle proteins was completely abolished by the domain III substitution. A reciprocal hybrid containing domains I and II of CryIC and domain III of CryIA(b) did bind to the 200-kDa protein, confirming that domain III of CryIA(b) was essential for this reaction. These results show that domain III of CryIC protein plays an important role in the level of toxicity to S. exigua, that substitution of domain III may be a powerful tool to increase the repertoire of available active toxins for pest insects, and that domain III is involved in binding to gut epithelium membrane proteins of S. exigua.

Full Text

The Full Text of this article is available as a PDF (338.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aronson A. I., Wu D., Zhang C. Mutagenesis of specificity and toxicity regions of a Bacillus thuringiensis protoxin gene. J Bacteriol. 1995 Jul;177(14):4059–4065. doi: 10.1128/jb.177.14.4059-4065.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bernhard K., Schrempf H., Goebel W. Bacteriocin and antibiotic resistance plasmids in Bacillus cereus and Bacillus subtilis. J Bacteriol. 1978 Feb;133(2):897–903. doi: 10.1128/jb.133.2.897-903.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bosch D., Schipper B., van der Kleij H., de Maagd R. A., Stiekema W. J. Recombinant Bacillus thuringiensis crystal proteins with new properties: possibilities for resistance management. Biotechnology (N Y) 1994 Sep;12(9):915–918. doi: 10.1038/nbt0994-915. [DOI] [PubMed] [Google Scholar]
  4. Bosch D., Visser B., Stiekema W. J. Analysis of non-active engineered Bacillus thuringiensis crystal proteins. FEMS Microbiol Lett. 1994 May 1;118(1-2):129–133. doi: 10.1111/j.1574-6968.1994.tb06814.x. [DOI] [PubMed] [Google Scholar]
  5. Caramori T., Albertini A. M., Galizzi A. In vivo generation of hybrids between two Bacillus thuringiensis insect-toxin-encoding genes. Gene. 1991 Feb 1;98(1):37–44. doi: 10.1016/0378-1119(91)90101-g. [DOI] [PubMed] [Google Scholar]
  6. Chak K. F., Tseng M. Y., Yamamoto T. Expression of the crystal protein gene under the control of the alpha-amylase promoter in Bacillus thuringiensis strains. Appl Environ Microbiol. 1994 Jul;60(7):2304–2310. doi: 10.1128/aem.60.7.2304-2310.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chen X. J., Lee M. K., Dean D. H. Site-directed mutations in a highly conserved region of Bacillus thuringiensis delta-endotoxin affect inhibition of short circuit current across Bombyx mori midguts. Proc Natl Acad Sci U S A. 1993 Oct 1;90(19):9041–9045. doi: 10.1073/pnas.90.19.9041. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ferré J., Real M. D., Van Rie J., Jansens S., Peferoen M. Resistance to the Bacillus thuringiensis bioinsecticide in a field population of Plutella xylostella is due to a change in a midgut membrane receptor. Proc Natl Acad Sci U S A. 1991 Jun 15;88(12):5119–5123. doi: 10.1073/pnas.88.12.5119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ge A. Z., Rivers D., Milne R., Dean D. H. Functional domains of Bacillus thuringiensis insecticidal crystal proteins. Refinement of Heliothis virescens and Trichoplusia ni specificity domains on CryIA(c). J Biol Chem. 1991 Sep 25;266(27):17954–17958. [PubMed] [Google Scholar]
  10. Ge A. Z., Shivarova N. I., Dean D. H. Location of the Bombyx mori specificity domain on a Bacillus thuringiensis delta-endotoxin protein. Proc Natl Acad Sci U S A. 1989 Jun;86(11):4037–4041. doi: 10.1073/pnas.86.11.4037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Haider M. Z., Knowles B. H., Ellar D. J. Specificity of Bacillus thuringiensis var. colmeri insecticidal delta-endotoxin is determined by differential proteolytic processing of the protoxin by larval gut proteases. Eur J Biochem. 1986 May 2;156(3):531–540. doi: 10.1111/j.1432-1033.1986.tb09612.x. [DOI] [PubMed] [Google Scholar]
  12. Hofmann C., Vanderbruggen H., Höfte H., Van Rie J., Jansens S., Van Mellaert H. Specificity of Bacillus thuringiensis delta-endotoxins is correlated with the presence of high-affinity binding sites in the brush border membrane of target insect midguts. Proc Natl Acad Sci U S A. 1988 Nov;85(21):7844–7848. doi: 10.1073/pnas.85.21.7844. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Honée G., Convents D., Van Rie J., Jansens S., Peferoen M., Visser B. The C-terminal domain of the toxic fragment of a Bacillus thuringiensis crystal protein determines receptor binding. Mol Microbiol. 1991 Nov;5(11):2799–2806. doi: 10.1111/j.1365-2958.1991.tb01988.x. [DOI] [PubMed] [Google Scholar]
  14. Höfte H., Whiteley H. R. Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol Rev. 1989 Jun;53(2):242–255. doi: 10.1128/mr.53.2.242-255.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Jaquet F., Hütter R., Lüthy P. Specificity of Bacillus thuringiensis Delta-Endotoxin. Appl Environ Microbiol. 1987 Mar;53(3):500–504. doi: 10.1128/aem.53.3.500-504.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Knight P. J., Crickmore N., Ellar D. J. The receptor for Bacillus thuringiensis CrylA(c) delta-endotoxin in the brush border membrane of the lepidopteran Manduca sexta is aminopeptidase N. Mol Microbiol. 1994 Feb;11(3):429–436. doi: 10.1111/j.1365-2958.1994.tb00324.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lee M. K., Milne R. E., Ge A. Z., Dean D. H. Location of a Bombyx mori receptor binding region on a Bacillus thuringiensis delta-endotoxin. J Biol Chem. 1992 Feb 15;267(5):3115–3121. [PubMed] [Google Scholar]
  18. Lee M. K., Young B. A., Dean D. H. Domain III exchanges of Bacillus thuringiensis CryIA toxins affect binding to different gypsy moth midgut receptors. Biochem Biophys Res Commun. 1995 Nov 2;216(1):306–312. doi: 10.1006/bbrc.1995.2625. [DOI] [PubMed] [Google Scholar]
  19. Li J. D., Carroll J., Ellar D. J. Crystal structure of insecticidal delta-endotoxin from Bacillus thuringiensis at 2.5 A resolution. Nature. 1991 Oct 31;353(6347):815–821. doi: 10.1038/353815a0. [DOI] [PubMed] [Google Scholar]
  20. Lu H., Rajamohan F., Dean D. H. Identification of amino acid residues of Bacillus thuringiensis delta-endotoxin CryIAa associated with membrane binding and toxicity to Bombyx mori. J Bacteriol. 1994 Sep;176(17):5554–5559. doi: 10.1128/jb.176.17.5554-5559.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Martens J. W., Visser B., Vlak J. M., Bosch D. Mapping and characterization of the entomocidal domain of the Bacillus thuringiensis CryIA(b) protoxin. Mol Gen Genet. 1995 May 20;247(4):482–487. doi: 10.1007/BF00293150. [DOI] [PubMed] [Google Scholar]
  22. Masson L., Lu Y. J., Mazza A., Brousseau R., Adang M. J. The CryIA(c) receptor purified from Manduca sexta displays multiple specificities. J Biol Chem. 1995 Sep 1;270(35):20309–20315. doi: 10.1074/jbc.270.35.20309. [DOI] [PubMed] [Google Scholar]
  23. Masson L., Mazza A., Gringorten L., Baines D., Aneliunas V., Brousseau R. Specificity domain localization of Bacillus thuringiensis insecticidal toxins is highly dependent on the bioassay system. Mol Microbiol. 1994 Dec;14(5):851–860. doi: 10.1111/j.1365-2958.1994.tb01321.x. [DOI] [PubMed] [Google Scholar]
  24. Oddou P., Hartmann H., Radecke F., Geiser M. Immunologically unrelated Heliothis sp. and Spodoptera sp. midgut membrane-proteins bind Bacillus thuringiensis CryIA(b) delta-endotoxin. Eur J Biochem. 1993 Feb 15;212(1):145–150. doi: 10.1111/j.1432-1033.1993.tb17644.x. [DOI] [PubMed] [Google Scholar]
  25. Oppert B., Kramer K. J., Johnson D. E., MacIntosh S. C., McGaughey W. H. Altered protoxin activation by midgut enzymes from a Bacillus thuringiensis resistant strain of Plodia interpunctella. Biochem Biophys Res Commun. 1994 Feb 15;198(3):940–947. doi: 10.1006/bbrc.1994.1134. [DOI] [PubMed] [Google Scholar]
  26. Sangadala S., Walters F. S., English L. H., Adang M. J. A mixture of Manduca sexta aminopeptidase and phosphatase enhances Bacillus thuringiensis insecticidal CryIA(c) toxin binding and 86Rb(+)-K+ efflux in vitro. J Biol Chem. 1994 Apr 1;269(13):10088–10092. [PubMed] [Google Scholar]
  27. Schnepf H. E., Tomczak K., Ortega J. P., Whiteley H. R. Specificity-determining regions of a lepidopteran-specific insecticidal protein produced by Bacillus thuringiensis. J Biol Chem. 1990 Dec 5;265(34):20923–20930. [PubMed] [Google Scholar]
  28. Smith G. P., Ellar D. J. Mutagenesis of two surface-exposed loops of the Bacillus thuringiensis CryIC delta-endotoxin affects insecticidal specificity. Biochem J. 1994 Sep 1;302(Pt 2):611–616. doi: 10.1042/bj3020611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Vadlamudi R. K., Ji T. H., Bulla L. A., Jr A specific binding protein from Manduca sexta for the insecticidal toxin of Bacillus thuringiensis subsp. berliner. J Biol Chem. 1993 Jun 15;268(17):12334–12340. [PubMed] [Google Scholar]
  30. Van Rie J., Jansens S., Höfte H., Degheele D., Van Mellaert H. Receptors on the brush border membrane of the insect midgut as determinants of the specificity of Bacillus thuringiensis delta-endotoxins. Appl Environ Microbiol. 1990 May;56(5):1378–1385. doi: 10.1128/aem.56.5.1378-1385.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Van Rie J., Jansens S., Höfte H., Degheele D., Van Mellaert H. Specificity of Bacillus thuringiensis delta-endotoxins. Importance of specific receptors on the brush border membrane of the mid-gut of target insects. Eur J Biochem. 1989 Dec 8;186(1-2):239–247. doi: 10.1111/j.1432-1033.1989.tb15201.x. [DOI] [PubMed] [Google Scholar]
  32. Van Rie J., McGaughey W. H., Johnson D. E., Barnett B. D., Van Mellaert H. Mechanism of insect resistance to the microbial insecticide Bacillus thuringiensis. Science. 1990 Jan 5;247(4938):72–74. doi: 10.1126/science.2294593. [DOI] [PubMed] [Google Scholar]
  33. Visser B. A screening for the presence of four different crystal protein gene types in 25 Bacillus thuringiensis strains. FEMS Microbiol Lett. 1989 Apr;49(2-3):121–124. doi: 10.1016/0378-1097(89)90024-4. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES