Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1996 May;62(5):1563–1569. doi: 10.1128/aem.62.5.1563-1569.1996

Disruption of the yeast ATH1 gene confers better survival after dehydration, freezing, and ethanol shock: potential commercial applications.

J Kim 1, P Alizadeh 1, T Harding 1, A Hefner-Gravink 1, D J Klionsky 1
PMCID: PMC167930  PMID: 8633854

Abstract

The accumulation of trehalose is a critical determinant of stress resistance in the yeast Saccharomyces cerevisiae. We have constructed a yeast strain in which the activity of the trehalose-hydrolyzing enzyme, acid trehalase (ATH), has been abolished. Loss of ATH activity was accomplished by disrupting the ATH1 gene, which is essential for ATH activity. The delta ath1 strain accumulated greater levels of cellular trehalose and grew to a higher cell density than the isogenic wild-type strain. In addition, the elevated levels of trehalose in the delta ath1 strain correlated with increased tolerance to dehydration, freezing, and toxic levels of ethanol. The improved resistance to stress conditions exhibited by the delta ath1 strain may make this strain useful in commercial applications, including baking and brewing.

Full Text

The Full Text of this article is available as a PDF (228.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. App H., Holzer H. Purification and characterization of neutral trehalase from the yeast ABYS1 mutant. J Biol Chem. 1989 Oct 15;264(29):17583–17588. [PubMed] [Google Scholar]
  2. Crowe J. H., Crowe L. M., Chapman D. Preservation of membranes in anhydrobiotic organisms: the role of trehalose. Science. 1984 Feb 17;223(4637):701–703. doi: 10.1126/science.223.4637.701. [DOI] [PubMed] [Google Scholar]
  3. Crowe J. H., Crowe L. M., Jackson S. A. Preservation of structural and functional activity in lyophilized sarcoplasmic reticulum. Arch Biochem Biophys. 1983 Feb 1;220(2):477–484. doi: 10.1016/0003-9861(83)90438-1. [DOI] [PubMed] [Google Scholar]
  4. Crowe J. H., Panek A. D., Crowe L. M., Panek A. C., De Araujo P. S. Trehalose transport in yeast cells. Biochem Int. 1991 Jul;24(4):721–730. [PubMed] [Google Scholar]
  5. Crowe L. M., Mouradian R., Crowe J. H., Jackson S. A., Womersley C. Effects of carbohydrates on membrane stability at low water activities. Biochim Biophys Acta. 1984 Jan 11;769(1):141–150. doi: 10.1016/0005-2736(84)90017-8. [DOI] [PubMed] [Google Scholar]
  6. De Araujo P. S., Panek A. C., Crowe J. H., Crowe L. M., Panek A. D. Trehalose-transporting membrane vesicles from yeasts. Biochem Int. 1991 Jul;24(4):731–737. [PubMed] [Google Scholar]
  7. Destruelle M., Holzer H., Klionsky D. J. Isolation and characterization of a novel yeast gene, ATH1, that is required for vacuolar acid trehalase activity. Yeast. 1995 Sep 15;11(11):1015–1025. doi: 10.1002/yea.320111103. [DOI] [PubMed] [Google Scholar]
  8. Elbein A. D. The metabolism of alpha,alpha-trehalose. Adv Carbohydr Chem Biochem. 1974;30:227–256. doi: 10.1016/s0065-2318(08)60266-8. [DOI] [PubMed] [Google Scholar]
  9. Eleutherio E. C., Araujo P. S., Panek A. D. Role of the trehalose carrier in dehydration resistance of Saccharomyces cerevisiae. Biochim Biophys Acta. 1993 Mar 21;1156(3):263–266. doi: 10.1016/0304-4165(93)90040-f. [DOI] [PubMed] [Google Scholar]
  10. Gélinas P., Fiset G., Leduy A., Goulet J. Effect of growth conditions and trehalose content on cryotolerance of bakers' yeast in frozen doughs. Appl Environ Microbiol. 1989 Oct;55(10):2453–2459. doi: 10.1128/aem.55.10.2453-2459.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Harris S. D., Cotter D. A. Transport of yeast vacuolar trehalase to the vacuole. Can J Microbiol. 1988 Jul;34(7):835–838. doi: 10.1139/m88-143. [DOI] [PubMed] [Google Scholar]
  12. Hino A., Mihara K., Nakashima K., Takano H. Trehalose levels and survival ratio of freeze-tolerant versus freeze-sensitive yeasts. Appl Environ Microbiol. 1990 May;56(5):1386–1391. doi: 10.1128/aem.56.5.1386-1391.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Keller F., Schellenberg M., Wiemken A. Localization of trehalase in vacuoles and of trehalose in the cytosol of yeast (Saccharomyces cerevisiae). Arch Microbiol. 1982 Jun;131(4):298–301. doi: 10.1007/BF00411175. [DOI] [PubMed] [Google Scholar]
  14. Kienle I., Burgert M., Holzer H. Assay of trehalose with acid trehalase purified from Saccharomyces cerevisiae. Yeast. 1993 Jun;9(6):607–611. doi: 10.1002/yea.320090607. [DOI] [PubMed] [Google Scholar]
  15. Kopp M., Müller H., Holzer H. Molecular analysis of the neutral trehalase gene from Saccharomyces cerevisiae. J Biol Chem. 1993 Mar 5;268(7):4766–4774. [PubMed] [Google Scholar]
  16. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  17. Leslie S. B., Israeli E., Lighthart B., Crowe J. H., Crowe L. M. Trehalose and sucrose protect both membranes and proteins in intact bacteria during drying. Appl Environ Microbiol. 1995 Oct;61(10):3592–3597. doi: 10.1128/aem.61.10.3592-3597.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lewis J. G., Learmonth R. P., Watson K. Role of growth phase and ethanol in freeze-thaw stress resistance of Saccharomyces cerevisiae. Appl Environ Microbiol. 1993 Apr;59(4):1065–1071. doi: 10.1128/aem.59.4.1065-1071.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lewis J. G., Northcott C. J., Learmonth R. P., Attfield P. V., Watson K. The need for consistent nomenclature and assessment of growth phases in diauxic cultures of Saccharomyces cerevisiae. J Gen Microbiol. 1993 Apr;139(4):835–839. doi: 10.1099/00221287-139-4-835. [DOI] [PubMed] [Google Scholar]
  20. Lillie S. H., Pringle J. R. Reserve carbohydrate metabolism in Saccharomyces cerevisiae: responses to nutrient limitation. J Bacteriol. 1980 Sep;143(3):1384–1394. doi: 10.1128/jb.143.3.1384-1394.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Londesborough J., Varimo K. Characterization of two trehalases in baker's yeast. Biochem J. 1984 Apr 15;219(2):511–518. doi: 10.1042/bj2190511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Mansure J. J., Panek A. D., Crowe L. M., Crowe J. H. Trehalose inhibits ethanol effects on intact yeast cells and liposomes. Biochim Biophys Acta. 1994 May 11;1191(2):309–316. doi: 10.1016/0005-2736(94)90181-3. [DOI] [PubMed] [Google Scholar]
  23. Mittenbühler K., Holzer H. Purification and characterization of acid trehalase from the yeast suc2 mutant. J Biol Chem. 1988 Jun 15;263(17):8537–8543. [PubMed] [Google Scholar]
  24. Nwaka S., Kopp M., Burgert M., Deuchler I., Kienle I., Holzer H. Is thermotolerance of yeast dependent on trehalose accumulation? FEBS Lett. 1994 May 16;344(2-3):225–228. doi: 10.1016/0014-5793(94)00385-8. [DOI] [PubMed] [Google Scholar]
  25. Nwaka S., Kopp M., Holzer H. Expression and function of the trehalase genes NTH1 and YBR0106 in Saccharomyces cerevisiae. J Biol Chem. 1995 Apr 28;270(17):10193–10198. doi: 10.1074/jbc.270.17.10193. [DOI] [PubMed] [Google Scholar]
  26. Nwaka S., Mechler B., Destruelle M., Holzer H. Phenotypic features of trehalase mutants in Saccharomyces cerevisiae. FEBS Lett. 1995 Mar 6;360(3):286–290. doi: 10.1016/0014-5793(95)00105-i. [DOI] [PubMed] [Google Scholar]
  27. Oda Y., Uno K., Ohta S. Selection of yeasts for breadmaking by the frozen-dough method. Appl Environ Microbiol. 1986 Oct;52(4):941–943. doi: 10.1128/aem.52.4.941-943.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. San Miguel P. F., Argüelles J. C. Differential changes in the activity of cytosolic and vacuolar trehalases along the growth cycle of Saccharomyces cerevisiae. Biochim Biophys Acta. 1994 Jul 6;1200(2):155–160. doi: 10.1016/0304-4165(94)90130-9. [DOI] [PubMed] [Google Scholar]
  29. Smith P. K., Krohn R. I., Hermanson G. T., Mallia A. K., Gartner F. H., Provenzano M. D., Fujimoto E. K., Goeke N. M., Olson B. J., Klenk D. C. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985 Oct;150(1):76–85. doi: 10.1016/0003-2697(85)90442-7. [DOI] [PubMed] [Google Scholar]
  30. Thevelein J. M. Regulation of trehalose mobilization in fungi. Microbiol Rev. 1984 Mar;48(1):42–59. doi: 10.1128/mr.48.1.42-59.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Werner-Washburne M., Braun E., Johnston G. C., Singer R. A. Stationary phase in the yeast Saccharomyces cerevisiae. Microbiol Rev. 1993 Jun;57(2):383–401. doi: 10.1128/mr.57.2.383-401.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES