Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1996 May;62(5):1623–1629. doi: 10.1128/aem.62.5.1623-1629.1996

Characterization of 16S rRNA genes from oil field microbial communities indicates the presence of a variety of sulfate-reducing, fermentative, and sulfide-oxidizing bacteria.

G Voordouw 1, S M Armstrong 1, M F Reimer 1, B Fouts 1, A J Telang 1, Y Shen 1, D Gevertz 1
PMCID: PMC167936  PMID: 8633860

Abstract

Oil field bacteria were characterized by cloning and sequencing of PCR-amplified 16S rRNA genes. A variety of gram-negative, sulfate-reducing bacteria was detected (16 members of the family Desulfovibrionaceae and 8 members of the family Desulfobacteriaceae). In contrast, a much more limited number of anaerobic, fermentative, or acetogenic bacteria was found (one Clostridium sp., one Eubacterium sp., and one Synergistes sp.). Potential sulfide oxidizers and/or microaerophiles (Thiomicrospira, Arcobacter, Campylobacter, and Oceanospirillum spp.) were also detected. The first two were prominently amplified from uncultured production water DNA and represented 28 and 47% of all clones, respectively. Growth on media containing sulfide as the electron donor and nitrate as the electron acceptor and designed for the isolation of Thiomicrospira spp. gave only significant enrichment of the Campylobacter sp., which was shown to be present in different western Canadian oil fields. This newly discovered sulfide oxidizer may provide a vital link in the oil field sulfur cycle by reoxidizing sulfide formed by microbial sulfate or sulfur reduction.

Full Text

The Full Text of this article is available as a PDF (290.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amann R. I., Stromley J., Devereux R., Key R., Stahl D. A. Molecular and microscopic identification of sulfate-reducing bacteria in multispecies biofilms. Appl Environ Microbiol. 1992 Feb;58(2):614–623. doi: 10.1128/aem.58.2.614-623.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Devereux R., He S. H., Doyle C. L., Orkland S., Stahl D. A., LeGall J., Whitman W. B. Diversity and origin of Desulfovibrio species: phylogenetic definition of a family. J Bacteriol. 1990 Jul;172(7):3609–3619. doi: 10.1128/jb.172.7.3609-3619.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Giovannoni S. J., Britschgi T. B., Moyer C. L., Field K. G. Genetic diversity in Sargasso Sea bacterioplankton. Nature. 1990 May 3;345(6270):60–63. doi: 10.1038/345060a0. [DOI] [PubMed] [Google Scholar]
  4. Hutchinson M., Johnstone K. I., White D. Taxonomy of anaerobic thiobacilli. J Gen Microbiol. 1967 Apr;47(1):17–23. doi: 10.1099/00221287-47-1-17. [DOI] [PubMed] [Google Scholar]
  5. Jenneman G. E., McInerney M. J., Knapp R. M. Effect of nitrate on biogenic sulfide production. Appl Environ Microbiol. 1986 Jun;51(6):1205–1211. doi: 10.1128/aem.51.6.1205-1211.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Laanbroek H. J., Stal L. H., Veldkamp H. Utilization of hydrogen and formate by Campylobacter spec. under aerobic and anaerobic conditions. Arch Microbiol. 1978 Oct 4;119(1):99–102. doi: 10.1007/BF00407935. [DOI] [PubMed] [Google Scholar]
  7. Magot M., Caumette P., Desperrier J. M., Matheron R., Dauga C., Grimont F., Carreau L. Desulfovibrio longus sp. nov., a sulfate-reducing bacterium isolated from an oil-producing well. Int J Syst Bacteriol. 1992 Jul;42(3):398–403. doi: 10.1099/00207713-42-3-398. [DOI] [PubMed] [Google Scholar]
  8. Maidak B. L., Larsen N., McCaughey M. J., Overbeek R., Olsen G. J., Fogel K., Blandy J., Woese C. R. The Ribosomal Database Project. Nucleic Acids Res. 1994 Sep;22(17):3485–3487. doi: 10.1093/nar/22.17.3485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. McClung C. R., Patriquin D. G. Isolation of a nitrogen-fixing Campylobacter species from the roots of Spartina alterniflora Loisel. Can J Microbiol. 1980 Aug;26(8):881–886. doi: 10.1139/m80-153. [DOI] [PubMed] [Google Scholar]
  10. Olsen G. J., Woese C. R., Overbeek R. The winds of (evolutionary) change: breathing new life into microbiology. J Bacteriol. 1994 Jan;176(1):1–6. doi: 10.1128/jb.176.1.1-6.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Rabus R., Nordhaus R., Ludwig W., Widdel F. Complete oxidation of toluene under strictly anoxic conditions by a new sulfate-reducing bacterium. Appl Environ Microbiol. 1993 May;59(5):1444–1451. doi: 10.1128/aem.59.5.1444-1451.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Rueter P., Rabus R., Wilkes H., Aeckersberg F., Rainey F. A., Jannasch H. W., Widdel F. Anaerobic oxidation of hydrocarbons in crude oil by new types of sulphate-reducing bacteria. Nature. 1994 Dec 1;372(6505):455–458. doi: 10.1038/372455a0. [DOI] [PubMed] [Google Scholar]
  13. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Vandamme P., Falsen E., Rossau R., Hoste B., Segers P., Tytgat R., De Ley J. Revision of Campylobacter, Helicobacter, and Wolinella taxonomy: emendation of generic descriptions and proposal of Arcobacter gen. nov. Int J Syst Bacteriol. 1991 Jan;41(1):88–103. doi: 10.1099/00207713-41-1-88. [DOI] [PubMed] [Google Scholar]
  15. Voordouw G., Niviere V., Ferris F. G., Fedorak P. M., Westlake D. W. Distribution of Hydrogenase Genes in Desulfovibrio spp. and Their Use in Identification of Species from the Oil Field Environment. Appl Environ Microbiol. 1990 Dec;56(12):3748–3754. doi: 10.1128/aem.56.12.3748-3754.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Voordouw G., Shen Y., Harrington C. S., Telang A. J., Jack T. R., Westlake D. W. Quantitative reverse sample genome probing of microbial communities and its application to oil field production waters. Appl Environ Microbiol. 1993 Dec;59(12):4101–4114. doi: 10.1128/aem.59.12.4101-4114.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Voordouw G., Strang J. D., Wilson F. R. Organization of the genes encoding [Fe] hydrogenase in Desulfovibrio vulgaris subsp. oxamicus Monticello. J Bacteriol. 1989 Jul;171(7):3881–3889. doi: 10.1128/jb.171.7.3881-3889.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Voordouw G. The genus desulfovibrio: the centennial. Appl Environ Microbiol. 1995 Aug;61(8):2813–2819. doi: 10.1128/aem.61.8.2813-2819.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Voordouw G., Voordouw J. K., Jack T. R., Foght J., Fedorak P. M., Westlake D. W. Identification of distinct communities of sulfate-reducing bacteria in oil fields by reverse sample genome probing. Appl Environ Microbiol. 1992 Nov;58(11):3542–3552. doi: 10.1128/aem.58.11.3542-3552.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Voordouw G., Voordouw J. K., Karkhoff-Schweizer R. R., Fedorak P. M., Westlake D. W. Reverse sample genome probing, a new technique for identification of bacteria in environmental samples by DNA hybridization, and its application to the identification of sulfate-reducing bacteria in oil field samples. Appl Environ Microbiol. 1991 Nov;57(11):3070–3078. doi: 10.1128/aem.57.11.3070-3078.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Woese C. R., Gutell R., Gupta R., Noller H. F. Detailed analysis of the higher-order structure of 16S-like ribosomal ribonucleic acids. Microbiol Rev. 1983 Dec;47(4):621–669. doi: 10.1128/mr.47.4.621-669.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Yanisch-Perron C., Vieira J., Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. doi: 10.1016/0378-1119(85)90120-9. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES