Abstract
Organophosphorus acid (OPA) anhydrolase enzymes have been found in a wide variety of prokaryotic and eukaryotic organisms. Interest in these enzymes has been prompted by their ability to catalyze the hydrolysis of toxic organophosphorus cholinesterase-inhibiting compounds, including pesticides and chemical nerve agents. The natural substrates for these enzymes are unknown. The gene (opaA) which encodes an OPA anhydrolase (OPAA-2) was isolated from an Alteromonas sp. strain JD6.5 EcoRI-lambda ZAPII chromosomal library expressed in Escherichia coli and identified by immunodetection with anti-OPAA-2 serum. OPA anhydrolase activity expressed by the immunopositive recombinant clones was demonstrated by using diisopropylfluorophosphate (DFP) as a substrate. A comparison of the recombinant enzyme with native, purified OPAA-2 showed they had the same apparent molecular mass (60 kDa), antigenic properties, and enzyme activity against DFP and the chemical nerve agents sarin, soman, and O-cyclohexyl methylphosphonofluoridate. The gene expressing this activity was found in a 1.74-kb PstI-HindIII fragment of the original 6.1-kb EcoRI DNA insert. The nucleotide sequence of this PstI-HindIII fragment revealed an open reading frame of 1,551 nucleotides, coding for a protein of 517 amino acid residues. Amino acid sequence comparison of OPAA-2 with the protein database showed that OPAA-2 is similar to a 647-amino-acid sequence produced by an open reading frame which appears to be the E. coli pepQ gene. Further comparison of OPAA-2, the E. coli PepQ protein sequence, E. coli aminopeptidase P, and human prolidase showed regions of different degrees of similarity or functionally conserved amino acid substitutions. These findings, along with preliminary data confirming the presence of prolidase activity expressed by OPAA-2, suggest that the OPAA-2 enzyme may, in nature, be used in peptide metabolism.
Full Text
The Full Text of this article is available as a PDF (375.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
- Attaway H., Nelson J. O., Baya A. M., Voll M. J., White W. E., Grimes D. J., Colwell R. R. Bacterial detoxification of diisopropyl fluorophosphate. Appl Environ Microbiol. 1987 Jul;53(7):1685–1689. doi: 10.1128/aem.53.7.1685-1689.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cheng T. C., Harvey S. P., Stroup A. N. Purification and Properties of a Highly Active Organophosphorus Acid Anhydrolase from Alteromonas undina. Appl Environ Microbiol. 1993 Sep;59(9):3138–3140. doi: 10.1128/aem.59.9.3138-3140.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DeFrank J. J., Beaudry W. T., Cheng T. C., Harvey S. P., Stroup A. N., Szafraniec L. L. Screening of halophilic bacteria and Alteromonas species for organophosphorus hydrolyzing enzyme activity. Chem Biol Interact. 1993 Jun;87(1-3):141–148. doi: 10.1016/0009-2797(93)90035-w. [DOI] [PubMed] [Google Scholar]
- DeFrank J. J., Cheng T. C. Purification and properties of an organophosphorus acid anhydrase from a halophilic bacterial isolate. J Bacteriol. 1991 Mar;173(6):1938–1943. doi: 10.1128/jb.173.6.1938-1943.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Doi E., Shibata D., Matoba T. Modified colorimetric ninhydrin methods for peptidase assay. Anal Biochem. 1981 Nov 15;118(1):173–184. doi: 10.1016/0003-2697(81)90175-5. [DOI] [PubMed] [Google Scholar]
- Dumas D. P., Caldwell S. R., Wild J. R., Raushel F. M. Purification and properties of the phosphotriesterase from Pseudomonas diminuta. J Biol Chem. 1989 Nov 25;264(33):19659–19665. [PubMed] [Google Scholar]
- Dumas D. P., Durst H. D., Landis W. G., Raushel F. M., Wild J. R. Inactivation of organophosphorus nerve agents by the phosphotriesterase from Pseudomonas diminuta. Arch Biochem Biophys. 1990 Feb 15;277(1):155–159. doi: 10.1016/0003-9861(90)90564-f. [DOI] [PubMed] [Google Scholar]
- Endo F., Matsuda I., Ogata A., Tanaka S. Human erythrocyte prolidase and prolidase deficiency. Pediatr Res. 1982 Mar;16(3):227–231. doi: 10.1203/00006450-198203000-00013. [DOI] [PubMed] [Google Scholar]
- Endo F., Motohara K., Indo Y., Matsuda I. Immunochemical studies of human prolidase with monoclonal and polyclonal antibodies: absence of the subunit of prolidase in erythrocytes from a patient with prolidase deficiency. Pediatr Res. 1987 Dec;22(6):627–633. doi: 10.1203/00006450-198712000-00002. [DOI] [PubMed] [Google Scholar]
- Endo F., Tanoue A., Nakai H., Hata A., Indo Y., Titani K., Matsuda I. Primary structure and gene localization of human prolidase. J Biol Chem. 1989 Mar 15;264(8):4476–4481. [PubMed] [Google Scholar]
- Feller G., Lonhienne T., Deroanne C., Libioulle C., Van Beeumen J., Gerday C. Purification, characterization, and nucleotide sequence of the thermolabile alpha-amylase from the antarctic psychrotroph Alteromonas haloplanctis A23. J Biol Chem. 1992 Mar 15;267(8):5217–5221. [PubMed] [Google Scholar]
- Hoskin F. C., Roush A. H. Hydrolysis of nerve gas by squid-type diisopropyl phosphorofluoridate hydrolyzing enzyme on agarose resin. Science. 1982 Mar 5;215(4537):1255–1257. doi: 10.1126/science.7058344. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- McDaniel C. S., Harper L. L., Wild J. R. Cloning and sequencing of a plasmid-borne gene (opd) encoding a phosphotriesterase. J Bacteriol. 1988 May;170(5):2306–2311. doi: 10.1128/jb.170.5.2306-2311.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mulbry W. W., Karns J. S., Kearney P. C., Nelson J. O., McDaniel C. S., Wild J. R. Identification of a plasmid-borne parathion hydrolase gene from Flavobacterium sp. by southern hybridization with opd from Pseudomonas diminuta. Appl Environ Microbiol. 1986 May;51(5):926–930. doi: 10.1128/aem.51.5.926-930.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mulbry W. W., Karns J. S. Parathion hydrolase specified by the Flavobacterium opd gene: relationship between the gene and protein. J Bacteriol. 1989 Dec;171(12):6740–6746. doi: 10.1128/jb.171.12.6740-6746.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nakahigashi K., Inokuchi H. Nucleotide sequence between the fadB gene and the rrnA operon from Escherichia coli. Nucleic Acids Res. 1990 Nov 11;18(21):6439–6439. doi: 10.1093/nar/18.21.6439. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Omburo G. A., Mullins L. S., Raushel F. M. Structural characterization of the divalent cation sites of bacterial phosphotriesterase by 113Cd NMR spectroscopy. Biochemistry. 1993 Sep 7;32(35):9148–9155. doi: 10.1021/bi00086a021. [DOI] [PubMed] [Google Scholar]
- Serdar C. M., Gibson D. T., Munnecke D. M., Lancaster J. H. Plasmid Involvement in Parathion Hydrolysis by Pseudomonas diminuta. Appl Environ Microbiol. 1982 Jul;44(1):246–249. doi: 10.1128/aem.44.1.246-249.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Short J. M., Fernandez J. M., Sorge J. A., Huse W. D. Lambda ZAP: a bacteriophage lambda expression vector with in vivo excision properties. Nucleic Acids Res. 1988 Aug 11;16(15):7583–7600. doi: 10.1093/nar/16.15.7583. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yoshimoto T., Tone H., Honda T., Osatomi K., Kobayashi R., Tsuru D. Sequencing and high expression of aminopeptidase P gene from Escherichia coli HB101. J Biochem. 1989 Mar;105(3):412–416. doi: 10.1093/oxfordjournals.jbchem.a122678. [DOI] [PubMed] [Google Scholar]