Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1996 May;62(5):1705–1709. doi: 10.1128/aem.62.5.1705-1709.1996

Xylulose and glucose fermentation by Saccharomyces cerevisiae in chemostat culture.

H Jeppsson 1, S Yu 1, B Hahn-Hägerdal 1
PMCID: PMC167945  PMID: 8633869

Abstract

Saccharomyces cerevisiae ATCC 24860 was cultivated in chemostat culture under anoxic conditions with 111.1 mmol of glucose liter-1 alone or with a mixture of 66.7 mmol of xylulose liter-1 and 111.1 mmol of glucose liter-1. The substrate consumption rate was 5.4 mmol g of cells-1 h-1 for glucose, whereas for xylulose it was 1.0 mmol g of cells-1 h-1. The ethanol yield decreased from 0.52 carbon mole of ethanol produced per carbon mole of sugar consumed during the utilization of glucose alone to 0.49 carbon mole produced per carbon mole consumed during the simultaneous utilization of xylulose and glucose, while cell biomass was maintained at 2.04 to 2.10 g liter-1. Xylulose coutilization was accompanied by a shift in product formation from ethanol to acetate and arabinitol. Xylulokinase activity was absent during glucose metabolism but detectable during simultaneous utilization of xylulose and glucose. Xylulose cometabolism resulted in increased in vitro activity of pyruvate decarboxylase and an increased concentration of the intracellular metabolite fructose 1,6-diphosphate without significant changes in the concentrations of 6-phosphogluconate and pyruvate. The results are discussed in relation to (i) altered enzyme activities and (ii) the redox flux of the cell.

Full Text

The Full Text of this article is available as a PDF (212.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ANDREASEN A. A., STIER T. J. B. Anaerobic nutrition of Saccharomyces cerevisiae. I. Ergosterol requirement for growth in a defined medium. J Cell Physiol. 1953 Feb;41(1):23–36. doi: 10.1002/jcp.1030410103. [DOI] [PubMed] [Google Scholar]
  2. ANDREASEN A. A., STIER T. J. Anaerobic nutrition of Saccharomyces cerevisiae. II. Unsaturated fatty acid requirement for growth in a defined medium. J Cell Physiol. 1954 Jun;43(3):271–281. doi: 10.1002/jcp.1030430303. [DOI] [PubMed] [Google Scholar]
  3. Boles E., Heinisch J., Zimmermann F. K. Different signals control the activation of glycolysis in the yeast Saccharomyces cerevisiae. Yeast. 1993 Jul;9(7):761–770. doi: 10.1002/yea.320090710. [DOI] [PubMed] [Google Scholar]
  4. Boles E., Zimmermann F. K. Induction of pyruvate decarboxylase in glycolysis mutants of Saccharomyces cerevisiae correlates with the concentrations of three-carbon glycolytic metabolites. Arch Microbiol. 1993;160(4):324–328. doi: 10.1007/BF00292085. [DOI] [PubMed] [Google Scholar]
  5. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  6. Bruinenberg P. M., van Dijken J. P., Scheffers W. A. An enzymic analysis of NADPH production and consumption in Candida utilis. J Gen Microbiol. 1983 Apr;129(4):965–971. doi: 10.1099/00221287-129-4-965. [DOI] [PubMed] [Google Scholar]
  7. Chiang L. C., Gong C. S., Chen L. F., Tsao G. T. d-Xylulose Fermentation to Ethanol by Saccharomyces cerevisiae. Appl Environ Microbiol. 1981 Aug;42(2):284–289. doi: 10.1128/aem.42.2.284-289.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gong C. S., Chen L. F., Flickinger M. C., Chiang L. C., Tsao G. T. Production of Ethanol from d-Xylose by Using d-Xylose Isomerase and Yeasts. Appl Environ Microbiol. 1981 Feb;41(2):430–436. doi: 10.1128/aem.41.2.430-436.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lagunas R., Gancedo J. M. Reduced pyridine-nucleotides balance in glucose-growing Saccharomyces cerevisiae. Eur J Biochem. 1973 Aug 1;37(1):90–94. doi: 10.1111/j.1432-1033.1973.tb02961.x. [DOI] [PubMed] [Google Scholar]
  10. Müller S., Boles E., May M., Zimmermann F. K. Different internal metabolites trigger the induction of glycolytic gene expression in Saccharomyces cerevisiae. J Bacteriol. 1995 Aug;177(15):4517–4519. doi: 10.1128/jb.177.15.4517-4519.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Sarthy A. V., McConaughy B. L., Lobo Z., Sundstrom J. A., Furlong C. E., Hall B. D. Expression of the Escherichia coli xylose isomerase gene in Saccharomyces cerevisiae. Appl Environ Microbiol. 1987 Sep;53(9):1996–2000. doi: 10.1128/aem.53.9.1996-2000.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Senac T., Hahn-Hägerdal B. Intermediary Metabolite Concentrations in Xylulose- and Glucose-Fermenting Saccharomyces cerevisiae Cells. Appl Environ Microbiol. 1990 Jan;56(1):120–126. doi: 10.1128/aem.56.1.120-126.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Shamanna D. K., Sanderson K. E. Uptake and catabolism of D-xylose in Salmonella typhimurium LT2. J Bacteriol. 1979 Jul;139(1):64–70. doi: 10.1128/jb.139.1.64-70.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Skoog K., Hahn-Hägerdal B. Effect of Oxygenation on Xylose Fermentation by Pichia stipitis. Appl Environ Microbiol. 1990 Nov;56(11):3389–3394. doi: 10.1128/aem.56.11.3389-3394.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Thestrup H. N., Hahn-Hägerdal B. Xylitol formation and reduction equivalent generation during anaerobic xylose conversion with glucose as cosubstrate in recombinant Saccharomyces cerevisiae expressing the xyl1 gene. Appl Environ Microbiol. 1995 May;61(5):2043–2045. doi: 10.1128/aem.61.5.2043-2045.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Verduyn C., Postma E., Scheffers W. A., Van Dijken J. P. Effect of benzoic acid on metabolic fluxes in yeasts: a continuous-culture study on the regulation of respiration and alcoholic fermentation. Yeast. 1992 Jul;8(7):501–517. doi: 10.1002/yea.320080703. [DOI] [PubMed] [Google Scholar]
  17. Verduyn C., Postma E., Scheffers W. A., van Dijken J. P. Physiology of Saccharomyces cerevisiae in anaerobic glucose-limited chemostat cultures. J Gen Microbiol. 1990 Mar;136(3):395–403. doi: 10.1099/00221287-136-3-395. [DOI] [PubMed] [Google Scholar]
  18. Visser W., Scheffers W. A., Batenburg-van der Vegte W. H., van Dijken J. P. Oxygen requirements of yeasts. Appl Environ Microbiol. 1990 Dec;56(12):3785–3792. doi: 10.1128/aem.56.12.3785-3792.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Walfridsson M., Hallborn J., Penttilä M., Keränen S., Hahn-Hägerdal B. Xylose-metabolizing Saccharomyces cerevisiae strains overexpressing the TKL1 and TAL1 genes encoding the pentose phosphate pathway enzymes transketolase and transaldolase. Appl Environ Microbiol. 1995 Dec;61(12):4184–4190. doi: 10.1128/aem.61.12.4184-4190.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Wang P. Y., Schneider H. Growth of yeasts on D-xylulose 1. Can J Microbiol. 1980 Sep;26(9):1165–1168. doi: 10.1139/m80-193. [DOI] [PubMed] [Google Scholar]
  21. Wang P. Y., Shopsis C., Schneider H. Fermentation of a pentose by yeasts. Biochem Biophys Res Commun. 1980 May 14;94(1):248–254. doi: 10.1016/s0006-291x(80)80213-0. [DOI] [PubMed] [Google Scholar]
  22. Yu S., Jeppsson H., Hahn-Hägerdal B. Xylulose fermentation by Saccharomyces cerevisiae and xylose-fermenting yeast strains. Appl Microbiol Biotechnol. 1995 Dec;44(3-4):314–320. doi: 10.1007/BF00169922. [DOI] [PubMed] [Google Scholar]
  23. de Koning W., van Dam K. A method for the determination of changes of glycolytic metabolites in yeast on a subsecond time scale using extraction at neutral pH. Anal Biochem. 1992 Jul;204(1):118–123. doi: 10.1016/0003-2697(92)90149-2. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES