Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1996 May;62(5):1770–1773. doi: 10.1128/aem.62.5.1770-1773.1996

Role of phosphorolytic cleavage in cellobiose and cellodextrin metabolism by the ruminal bacterium Prevotella ruminicola.

J Lou 1, K A Dawson 1, H J Strobel 1
PMCID: PMC167952  PMID: 8633876

Abstract

In bacteria, cellobiose and cellodextrins are usually degraded by either hydrolytic or phosphorolytic cleavage. Prevotella ruminicola B(1)4 is a noncellulolytic ruminal bacterium which has the ability to utilize the products of cellulose degradation. In this organism, cellobiose hydrolytic cleavage activity was threefold greater than phosphorolytic cleavage activity (113 versus 34 nmol/min/mg of protein), as measured by an enzymatic assay. Cellobiose phosphorylase activity (measured as the release of P(i)) was found in cellobiose-, mannose-, xylose-, lactose-, and cellodextrin-grown cells (> 92 nmol of P(i)/min/mg of protein), but the activity was reduced by more than 74% for cells grown on fructose, L-arabinose, sucrose, maltose, or glucose. A small amount of cellodextrin phosphorylase activity (19 nmol/min/mg of protein) was also detected, and both phosphorylase activities were located in the cytoplasm. Degradation involving phosphorolytic cleavage conserves more metabolic energy than simple hydrolysis, and such degradation is consistent with substrate-limiting conditions such as those often found in the rumen.

Full Text

The Full Text of this article is available as a PDF (195.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AYERS W. A. Phosphorylation of cellobiose and glucose by Ruminococcus flavefaciens. J Bacteriol. 1958 Nov;76(5):515–517. doi: 10.1128/jb.76.5.515-517.1958. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Alexander J. K. Purification and specificity of cellobiose phosphorylase from Clostridium thermocellum. J Biol Chem. 1968 Jun 10;243(11):2899–2904. [PubMed] [Google Scholar]
  3. BAILEY R. W. The reaction of pentoses with anthrone. Biochem J. 1958 Apr;68(4):669–672. doi: 10.1042/bj0680669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bryant M. P. Nutritional requirements of the predominant rumen cellulolytic bacteria. Fed Proc. 1973 Jul;32(7):1809–1813. [PubMed] [Google Scholar]
  5. Gasparic A., Martin J., Daniel A. S., Flint H. J. A xylan hydrolase gene cluster in Prevotella ruminicola B(1)4: sequence relationships, synergistic interactions, and oxygen sensitivity of a novel enzyme with exoxylanase and beta-(1,4)-xylosidase activities. Appl Environ Microbiol. 1995 Aug;61(8):2958–2964. doi: 10.1128/aem.61.8.2958-2964.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Helaszek C. T., White B. A. Cellobiose uptake and metabolism by Ruminococcus flavefaciens. Appl Environ Microbiol. 1991 Jan;57(1):64–68. doi: 10.1128/aem.57.1.64-68.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kinoshita N., Unemoto T., Kobayashi H. Sodium-stimulated ATPase in Streptococcus faecalis. J Bacteriol. 1984 Jun;158(3):844–848. doi: 10.1128/jb.158.3.844-848.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  9. Matsushita O., Russell J. B., Wilson D. B. A Bacteroides ruminicola 1,4-beta-D-endoglucanase is encoded in two reading frames. J Bacteriol. 1991 Nov;173(21):6919–6926. doi: 10.1128/jb.173.21.6919-6926.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ohmiya K., Shimizu M., Taya M., Shimizu S. Purification and properties of cellobiosidase from Ruminococcus albus. J Bacteriol. 1982 Apr;150(1):407–409. doi: 10.1128/jb.150.1.407-409.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Russell J. B., Baldwin R. L. Substrate preferences in rumen bacteria: evidence of catabolite regulatory mechanisms. Appl Environ Microbiol. 1978 Aug;36(2):319–329. doi: 10.1128/aem.36.2.319-329.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Russell J. B. Fermentation of cellodextrins by cellulolytic and noncellulolytic rumen bacteria. Appl Environ Microbiol. 1985 Mar;49(3):572–576. doi: 10.1128/aem.49.3.572-576.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Scheifinger C. C., Wolin M. J. Propionate formation from cellulose and soluble sugars by combined cultures of Bacteroides succinogenes and Selenomonas ruminantium. Appl Microbiol. 1973 Nov;26(5):789–795. doi: 10.1128/am.26.5.789-795.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Strobel H. J., Russell J. B. Regulation of beta-glucosidase in Bacteroides ruminicola by a different mechanism: growth rate-dependent derepression. Appl Environ Microbiol. 1987 Oct;53(10):2505–2510. doi: 10.1128/aem.53.10.2505-2510.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Thurston B., Dawson K. A., Strobel H. J. Cellobiose versus glucose utilization by the ruminal bacterium Ruminococcus albus. Appl Environ Microbiol. 1993 Aug;59(8):2631–2637. doi: 10.1128/aem.59.8.2631-2637.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Wells J. E., Russell J. B., Shi Y., Weimer P. J. Cellodextrin efflux by the cellulolytic ruminal bacterium Fibrobacter succinogenes and its potential role in the growth of nonadherent bacteria. Appl Environ Microbiol. 1995 May;61(5):1757–1762. doi: 10.1128/aem.61.5.1757-1762.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Wulff-Strobel C. R., Wilson D. B. Cloning, sequencing, and characterization of a membrane-associated Prevotella ruminicola B(1)4 beta-glucosidase with cellodextrinase and cyanoglycosidase activities. J Bacteriol. 1995 Oct;177(20):5884–5890. doi: 10.1128/jb.177.20.5884-5890.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES