Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1996 May;62(5):1774–1780. doi: 10.1128/aem.62.5.1774-1780.1996

Production and processing of a 59-kilodalton exochitinase during growth of Streptomyces lividans carrying pCHIO12 in soil microcosms amended with crab or fungal chitin.

A P Vionis 1, F Niemeyer 1, A D Karagouni 1, H Schrempf 1
PMCID: PMC167953  PMID: 8633877

Abstract

Streptomyces lividans (pCHIO12), which carries the previously cloned Streptomyces olivaceoviridis exo-chiO1 gene on a multicopy vector, secretes a 59-kDa exochitinase, consisting of a catalytic domain (40 kDa), a central fibronectin type III-like module, and a chitin-binding domain (12 kDa). The propagation rate of S. lividans (pCHIO12) was higher in soil microcosms amended with fungal mycelia than in those containing crab chitin. Comparative biochemical and immunological studies allowed the following conclusions to be drawn. Within soil microcosm systems amended with crab shell chitin or chitin-containing Aspergillus proliferans mycelia, the strain expressed the clones exo-chiO1 gene and produced high quantities of a 59-kDa exochitinase. The enzyme was preferentially attached via its binding domain to the pellet from soil or liquid cultures. In contrast, truncated forms of 47, 40, and 25 kDa could be easily extracted from soil. The relative proportions of the 59-kDa enzyme and its truncated forms varied depending on the source of chitin and differed in soil and in liquid cultures.

Full Text

The Full Text of this article is available as a PDF (959.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BARTNICKI-GARCIA S., NICKERSON W. J. Isolation, composition, and structure of cell walls of filamentous and yeast-like forms of Mucor rouxii. Biochim Biophys Acta. 1962 Mar 26;58:102–119. doi: 10.1016/0006-3002(62)90822-3. [DOI] [PubMed] [Google Scholar]
  2. Blaak H., Schnellmann J., Walter S., Henrissat B., Schrempf H. Characteristics of an exochitinase from Streptomyces olivaceoviridis, its corresponding gene, putative protein domains and relationship to other chitinases. Eur J Biochem. 1993 Jun 15;214(3):659–669. doi: 10.1111/j.1432-1033.1993.tb17966.x. [DOI] [PubMed] [Google Scholar]
  3. Blaak H., Schrempf H. Binding and substrate specificities of a Streptomyces olivaceoviridis chitinase in comparison with its proteolytically processed form. Eur J Biochem. 1995 Apr 1;229(1):132–139. doi: 10.1111/j.1432-1033.1995.tb20447.x. [DOI] [PubMed] [Google Scholar]
  4. Bork P., Doolittle R. F. Proposed acquisition of an animal protein domain by bacteria. Proc Natl Acad Sci U S A. 1992 Oct 1;89(19):8990–8994. doi: 10.1073/pnas.89.19.8990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chen J. P., Nagayama F., Chang M. C. Cloning and expression of a chitinase gene from Aeromonas hydrophila in Escherichia coli. Appl Environ Microbiol. 1991 Aug;57(8):2426–2428. doi: 10.1128/aem.57.8.2426-2428.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fuchs R. L., McPherson S. A., Drahos D. J. Cloning of a Serratia marcescens Gene Encoding Chitinase. Appl Environ Microbiol. 1986 Mar;51(3):504–509. doi: 10.1128/aem.51.3.504-509.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Henrissat B. A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J. 1991 Dec 1;280(Pt 2):309–316. doi: 10.1042/bj2800309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Herron P. R., Wellington E. M. New method for extraction of streptomycete spores from soil and application to the study of lysogeny in sterile amended and nonsterile soil. Appl Environ Microbiol. 1990 May;56(5):1406–1412. doi: 10.1128/aem.56.5.1406-1412.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kjelleberg S., Humphrey B. A., Marshall K. C. Initial phases of starvation and activity of bacteria at surfaces. Appl Environ Microbiol. 1983 Nov;46(5):978–984. doi: 10.1128/aem.46.5.978-984.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  11. Meinke A., Braun C., Gilkes N. R., Kilburn D. G., Miller R. C., Jr, Warren R. A. Unusual sequence organization in CenB, an inverting endoglucanase from Cellulomonas fimi. J Bacteriol. 1991 Jan;173(1):308–314. doi: 10.1128/jb.173.1.308-314.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Robbins P. W., Albright C., Benfield B. Cloning and expression of a Streptomyces plicatus chitinase (chitinase-63) in Escherichia coli. J Biol Chem. 1988 Jan 5;263(1):443–447. [PubMed] [Google Scholar]
  13. Roller C., Wagner M., Amann R., Ludwig W., Schleifer K. H. In situ probing of gram-positive bacteria with high DNA G + C content using 23S rRNA-targeted oligonucleotides. Microbiology. 1994 Oct;140(Pt 10):2849–2858. doi: 10.1099/00221287-140-10-2849. [DOI] [PubMed] [Google Scholar]
  14. Romaguera A., Menge U., Breves R., Diekmann H. Chitinases of Streptomyces olivaceoviridis and significance of processing for multiplicity. J Bacteriol. 1992 Jun;174(11):3450–3454. doi: 10.1128/jb.174.11.3450-3454.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Ruoslahti E. Fibronectin and its receptors. Annu Rev Biochem. 1988;57:375–413. doi: 10.1146/annurev.bi.57.070188.002111. [DOI] [PubMed] [Google Scholar]
  16. Schlochtermeier A., Niemeyer F., Schrempf H. Biochemical and Electron Microscopic Studies of the Streptomyces reticuli Cellulase (Avicelase) in Its Mycelium-Associated and Extracellular Forms. Appl Environ Microbiol. 1992 Oct;58(10):3240–3248. doi: 10.1128/aem.58.10.3240-3248.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Schnellmann J., Zeltins A., Blaak H., Schrempf H. The novel lectin-like protein CHB1 is encoded by a chitin-inducible Streptomyces olivaceoviridis gene and binds specifically to crystalline alpha-chitin of fungi and other organisms. Mol Microbiol. 1994 Sep;13(5):807–819. doi: 10.1111/j.1365-2958.1994.tb00473.x. [DOI] [PubMed] [Google Scholar]
  18. Tarentino A. L., Maley F. Purification and properties of an endo-beta-N-acetylglucosaminidase from Streptomyces griseus. J Biol Chem. 1974 Feb 10;249(3):811–817. [PubMed] [Google Scholar]
  19. Watanabe T., Oyanagi W., Suzuki K., Ohnishi K., Tanaka H. Structure of the gene encoding chitinase D of Bacillus circulans WL-12 and possible homology of the enzyme to other prokaryotic chitinases and class III plant chitinases. J Bacteriol. 1992 Jan;174(2):408–414. doi: 10.1128/jb.174.2.408-414.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Wellington E. M., Cresswell N., Saunders V. A. Growth and survival of streptomycete inoculants and extent of plasmid transfer in sterile and nonsterile soil. Appl Environ Microbiol. 1990 May;56(5):1413–1419. doi: 10.1128/aem.56.5.1413-1419.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Wynne E. C., Pemberton J. M. Cloning of a Gene Cluster from Cellvibrio mixtus which Codes for Cellulase, Chitinase, Amylase, and Pectinase. Appl Environ Microbiol. 1986 Dec;52(6):1362–1367. doi: 10.1128/aem.52.6.1362-1367.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Zeltins A., Schrempf H. Visualization of alpha-chitin with a specific chitin-binding protein (CHB1) from Streptomyces olivaceoviridis. Anal Biochem. 1995 Nov 1;231(2):287–294. doi: 10.1006/abio.1995.0053. [DOI] [PubMed] [Google Scholar]
  23. van Loosdrecht M. C., Lyklema J., Norde W., Zehnder A. J. Influence of interfaces on microbial activity. Microbiol Rev. 1990 Mar;54(1):75–87. doi: 10.1128/mr.54.1.75-87.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES