Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1996 May;62(5):1781–1787. doi: 10.1128/aem.62.5.1781-1787.1996

Recovery of different Listeria ribotypes from naturally contaminated, raw refrigerated meat and poultry products with two primary enrichment media.

E T Ryser 1, S M Arimi 1, M M Bunduki 1, C W Donnelly 1
PMCID: PMC167954  PMID: 8633878

Abstract

Isolation rates for Listeria monocytogenes and the other Listeria spp. typically improve when samples are enriched in more than one primary enrichment medium. This study evaluated the abilities of two primary enrichment media, University of Vermont-modified Listeria enrichment broth (UVM) and Listeria repair broth (LRB), to recover different ribotypes of Listeria spp. from raw meat and poultry samples. Forty-five paired 25-g retail samples of ground beef, pork sausage, ground turkey, and chicken (160 samples) underwent primary enrichment in UVM and LRB (30 degrees C for 24 h) followed by secondary enrichment in Fraser broth (35 degrees C for 24 and 40 h) and plating on modified Oxford agar. After 24 h of incubation of 35 degrees C, 608 Listeria colonies from selected positive samples were biochemically confirmed as L. monocytogenes (245 isolates), L innocua (276 isolates), and L. welshimeri (89 isolates) and then ribotyped with the automated Riboprinter microbial characterization system (E. I. du Pont de Nemours & Co., Inc.). Thirty-six different Listeria strains comprising 16 L. monocytogenes (including four known clinical ribotypes), 12 L. innocua, and 8 L. welshimeri ribotypes were identified from selected positive samples (15 samples of each product type; two UVM and two LRB isolates per sample). Twenty-six of 36(13 L. monocytogenes) ribotypes were detected with both UVM and LRB, whereas 3 of 36 (1 L. monocytogenes) and 7 of 36 (3 L. monocytogenes) Listeria ribotypes were observed with only UVM or LRB, respectively. Ground beef, pork sausage, ground turkey, and chicken yielded 22 (8 L. monocytogenes), 21 (12 L. monocytogenes), 20 (9 L. monocytogenes), and 19 (11 L. monocytogenes) different Listeria ribotypes, respectively, with some Listeria ribotypes confined to a particular product. More importantly, major differences in both the number and distribution of Listeria ribotypes, including previously recognized clinical and nonclinical ribotypes of L. monocytogenes, were observed when 10 UVM and 10 LRB isolates from five samples of each product were ribotyped. When a third set of six samples per product type was examined from which two Listeria isolates were obtained by using only one of the two primary enrichment media, UVM and LRB failed to detect L. monocytogenes (both clinical and nonclinical ribotypes) in two and four samples, respectively. These findings stress the importance of using more than one primary enrichment medium and picking a sufficient number of colonies per sample when attempting to isolate specific L. monocytogenes strains during investigations of food-borne listeriosis.

Full Text

The Full Text of this article is available as a PDF (251.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bader J. M. Listeriosis epidemic. Lancet. 1993 Sep 4;342(8871):607–607. doi: 10.1016/0140-6736(93)91422-i. [DOI] [PubMed] [Google Scholar]
  2. Bibb W. F., Gellin B. G., Weaver R., Schwartz B., Plikaytis B. D., Reeves M. W., Pinner R. W., Broome C. V. Analysis of clinical and food-borne isolates of Listeria monocytogenes in the United States by multilocus enzyme electrophoresis and application of the method to epidemiologic investigations. Appl Environ Microbiol. 1990 Jul;56(7):2133–2141. doi: 10.1128/aem.56.7.2133-2141.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Breer C., Schopfer K. Listerien in Nahrungsmitteln. Schweiz Med Wochenschr. 1989 Mar 11;119(10):306–311. [PubMed] [Google Scholar]
  4. Brosch R., Chen J., Luchansky J. B. Pulsed-field fingerprinting of listeriae: identification of genomic divisions for Listeria monocytogenes and their correlation with serovar. Appl Environ Microbiol. 1994 Jul;60(7):2584–2592. doi: 10.1128/aem.60.7.2584-2592.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bruce J. L., Hubner R. J., Cole E. M., McDowell C. I., Webster J. A. Sets of EcoRI fragments containing ribosomal RNA sequences are conserved among different strains of Listeria monocytogenes. Proc Natl Acad Sci U S A. 1995 May 23;92(11):5229–5233. doi: 10.1073/pnas.92.11.5229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Busch S. V., Donnelly C. W. Development of a repair-enrichment broth for resuscitation of heat-injured Listeria monocytogenes and Listeria innocua. Appl Environ Microbiol. 1992 Jan;58(1):14–20. doi: 10.1128/aem.58.1.14-20.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Farber J. M., Daley E. Presence and growth of Listeria monocytogenes in naturally-contaminated meats. Int J Food Microbiol. 1994 Apr;22(1):33–42. doi: 10.1016/0168-1605(94)90005-1. [DOI] [PubMed] [Google Scholar]
  8. Farber J. M., Peterkin P. I. Listeria monocytogenes, a food-borne pathogen. Microbiol Rev. 1991 Sep;55(3):476–511. doi: 10.1128/mr.55.3.476-511.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Harvey J., Gilmour A. Application of multilocus enzyme electrophoresis and restriction fragment length polymorphism analysis to the typing of Listeria monocytogenes strains isolated from raw milk, nondairy foods, and clinical and veterinary sources. Appl Environ Microbiol. 1994 May;60(5):1547–1553. doi: 10.1128/aem.60.5.1547-1553.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hubner R. J., Cole E. M., Bruce J. L., McDowell C. I., Webster J. A. Types of Listeria monocytogenes predicted by the positions of EcoRI cleavage sites relative to ribosomal RNA sequences. Proc Natl Acad Sci U S A. 1995 May 23;92(11):5234–5238. doi: 10.1073/pnas.92.11.5234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Jacquet C., Bille J., Rocourt J. Typing of Listeria monocytogenes by restriction polymorphism of the ribosomal ribonucleic acid gene region. Zentralbl Bakteriol. 1992 Feb;276(3):356–365. doi: 10.1016/s0934-8840(11)80542-6. [DOI] [PubMed] [Google Scholar]
  12. Kaczmarski E. B., Jones D. M. Listeriosis and ready-cooked chicken. Lancet. 1989 Mar 11;1(8637):549–549. doi: 10.1016/s0140-6736(89)90084-6. [DOI] [PubMed] [Google Scholar]
  13. Kerr K. G., Dealler S. F., Lacey R. W. Materno-fetal listeriosis from cook-chill and refrigerated food. Lancet. 1988 Nov 12;2(8620):1133–1133. doi: 10.1016/s0140-6736(88)90543-0. [DOI] [PubMed] [Google Scholar]
  14. Lawrence L. M., Gilmour A. Characterization of Listeria monocytogenes isolated from poultry products and from the poultry-processing environment by random amplification of polymorphic DNA and multilocus enzyme electrophoresis. Appl Environ Microbiol. 1995 Jun;61(6):2139–2144. doi: 10.1128/aem.61.6.2139-2144.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Linnan M. J., Mascola L., Lou X. D., Goulet V., May S., Salminen C., Hird D. W., Yonekura M. L., Hayes P., Weaver R. Epidemic listeriosis associated with Mexican-style cheese. N Engl J Med. 1988 Sep 29;319(13):823–828. doi: 10.1056/NEJM198809293191303. [DOI] [PubMed] [Google Scholar]
  16. McKellar R. C. Use of the CAMP test for identification of Listeria monocytogenes. Appl Environ Microbiol. 1994 Dec;60(12):4219–4225. doi: 10.1128/aem.60.12.4219-4225.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. McLauchlin J., Hall S. M., Velani S. K., Gilbert R. J. Human listeriosis and paté: a possible association. BMJ. 1991 Sep 28;303(6805):773–775. doi: 10.1136/bmj.303.6805.773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Nocera D., Altwegg M., Martinetti Lucchini G., Bannerman E., Ischer F., Rocourt J., Bille J. Characterization of Listeria strains from a foodborne listeriosis outbreak by rDNA gene restriction patterns compared to four other typing methods. Eur J Clin Microbiol Infect Dis. 1993 Mar;12(3):162–169. doi: 10.1007/BF01967106. [DOI] [PubMed] [Google Scholar]
  19. Piffaretti J. C., Kressebuch H., Aeschbacher M., Bille J., Bannerman E., Musser J. M., Selander R. K., Rocourt J. Genetic characterization of clones of the bacterium Listeria monocytogenes causing epidemic disease. Proc Natl Acad Sci U S A. 1989 May;86(10):3818–3822. doi: 10.1073/pnas.86.10.3818. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Pritchard T. J., Flanders K. J., Donnelly C. W. Comparison of the incidence of Listeria on equipment versus environmental sites within dairy processing plants. Int J Food Microbiol. 1995 Aug;26(3):375–384. doi: 10.1016/0168-1605(94)00130-x. [DOI] [PubMed] [Google Scholar]
  21. Schlech W. F., 3rd, Lavigne P. M., Bortolussi R. A., Allen A. C., Haldane E. V., Wort A. J., Hightower A. W., Johnson S. E., King S. H., Nicholls E. S. Epidemic listeriosis--evidence for transmission by food. N Engl J Med. 1983 Jan 27;308(4):203–206. doi: 10.1056/NEJM198301273080407. [DOI] [PubMed] [Google Scholar]
  22. Skovgaard N., Morgen C. A. Detection of Listeria spp. in faeces from animals, in feeds, and in raw foods of animal origin. Int J Food Microbiol. 1988 May;6(3):229–242. doi: 10.1016/0168-1605(88)90015-3. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES