Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1996 May;62(5):1847–1851. doi: 10.1128/aem.62.5.1847-1851.1996

Defective site-specific integration elements are present in the genome of virulent bacteriophage LL-H of Lactobacillus delbrueckii.

M Mikkonen 1, L Dupont 1, T Alatossava 1, P Ritzenthaler 1
PMCID: PMC167964  PMID: 8633887

Abstract

The phage attachment site, attP, and the integrase-encoding gene, int, are sufficient to promote site-specific integration of the temperate phage mv4 genome into the chromosome of the Lactobacillus delbrueckii host (L. Dupont, B. Boizet-Bonhoure, M. Coddeville, F. Auvray, and P. Ritzenthaler, J. Bacteriol. 177:586--595, 1995). The mv4 genome region containing these elements was compared at the nucleotide and amino acid levels with that of the closely related virulent phage LL-H. Complex DNA rearrangements were identified; a truncated integrase gene and two sites homologous to the mv4 attP site were detected in the genome of the virulent phage LL-H. These observations suggest that the two phages derive from a common temperate ancestor.

Full Text

The Full Text of this article is available as a PDF (206.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alatossava T., Forsman P., Ritzenthaler P. Genome homology and superinfection immunity between temperate and virulent Lactobacillus delbrueckii bacteriophages. Arch Virol. 1995;140(12):2261–2268. doi: 10.1007/BF01323245. [DOI] [PubMed] [Google Scholar]
  2. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  3. Argos P., Landy A., Abremski K., Egan J. B., Haggard-Ljungquist E., Hoess R. H., Kahn M. L., Kalionis B., Narayana S. V., Pierson L. S., 3rd The integrase family of site-specific recombinases: regional similarities and global diversity. EMBO J. 1986 Feb;5(2):433–440. doi: 10.1002/j.1460-2075.1986.tb04229.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Baker J., Limberger R., Schneider S. J., Campbell A. Recombination and modular exchange in the genesis of new lambdoid phages. New Biol. 1991 Mar;3(3):297–308. [PubMed] [Google Scholar]
  5. Botstein D. A theory of modular evolution for bacteriophages. Ann N Y Acad Sci. 1980;354:484–490. doi: 10.1111/j.1749-6632.1980.tb27987.x. [DOI] [PubMed] [Google Scholar]
  6. Boyce J. D., Davidson B. E., Hillier A. J. Spontaneous deletion mutants of the Lactococcus lactis temperate bacteriophage BK5-T and localization of the BK5-T attP site. Appl Environ Microbiol. 1995 Nov;61(11):4105–4109. doi: 10.1128/aem.61.11.4105-4109.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Campbell A. Comparative molecular biology of lambdoid phages. Annu Rev Microbiol. 1994;48:193–222. doi: 10.1146/annurev.mi.48.100194.001205. [DOI] [PubMed] [Google Scholar]
  8. Cluzel P. J., Veaux M., Rousseau M., Accolas J. P. Evidence for temperate bacteriophages in two strains of Lactobacillus bulgaricus. J Dairy Res. 1987 Aug;54(3):397–405. doi: 10.1017/s0022029900025577. [DOI] [PubMed] [Google Scholar]
  9. Davidson B. E., Powell I. B., Hillier A. J. Temperate bacteriophages and lysogeny in lactic acid bacteria. FEMS Microbiol Rev. 1990 Sep;7(1-2):79–90. doi: 10.1111/j.1574-6968.1990.tb04880.x. [DOI] [PubMed] [Google Scholar]
  10. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dupont L., Boizet-Bonhoure B., Coddeville M., Auvray F., Ritzenthaler P. Characterization of genetic elements required for site-specific integration of Lactobacillus delbrueckii subsp. bulgaricus bacteriophage mv4 and construction of an integration-proficient vector for Lactobacillus plantarum. J Bacteriol. 1995 Feb;177(3):586–595. doi: 10.1128/jb.177.3.586-595.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Forsman P. Characterization of a prolate-headed bacteriophage of Lactobacillus delbrueckii subsp. lactis, and its DNA homology with isometric-headed phages. Arch Virol. 1993;132(3-4):321–330. doi: 10.1007/BF01309542. [DOI] [PubMed] [Google Scholar]
  13. Forsman Päivi, Alatossava Tapani. Genetic Variation of Lactobacillus delbrueckii subsp. lactis Bacteriophages Isolated from Cheese Processing Plants in Finland. Appl Environ Microbiol. 1991 Jun;57(6):1805–1812. doi: 10.1128/aem.57.6.1805-1812.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Friedman D. I., Imperiale M. J., Adhya S. L. RNA 3' end formation in the control of gene expression. Annu Rev Genet. 1987;21:453–488. doi: 10.1146/annurev.ge.21.120187.002321. [DOI] [PubMed] [Google Scholar]
  15. Kong D., Masker W. Deletion between direct repeats in T7 DNA stimulated by double-strand breaks. J Bacteriol. 1994 Oct;176(19):5904–5911. doi: 10.1128/jb.176.19.5904-5911.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lahbib-Mansais Y., Mata M., Ritzenthaler P. Molecular taxonomy of Lactobacillus phages. Biochimie. 1988 Mar;70(3):429–435. doi: 10.1016/0300-9084(88)90217-9. [DOI] [PubMed] [Google Scholar]
  17. Mata M., Trautwetter A., Luthaud G., Ritzenthaler P. Thirteen Virulent and Temperate Bacteriophages of Lactobacillus bulgaricus and Lactobacillus lactis Belong to a Single DNA Homology Group. Appl Environ Microbiol. 1986 Oct;52(4):812–818. doi: 10.1128/aem.52.4.812-818.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Mikkonen M., Alatossava T. A group I intron in the terminase gene of Lactobacillus delbrueckii subsp. lactis phage LL-H. Microbiology. 1995 Sep;141(Pt 9):2183–2190. doi: 10.1099/13500872-141-9-2183. [DOI] [PubMed] [Google Scholar]
  19. Mikkonen M., Alatossava T. Characterization of the genome region encoding structural proteins of Lactobacillus delbrueckii subsp. lactis bacteriophage LL-H. Gene. 1994 Dec 30;151(1-2):53–59. doi: 10.1016/0378-1119(94)90632-7. [DOI] [PubMed] [Google Scholar]
  20. Mikkonen M., Vuoristo J., Alatossava T. Ribosome binding site consensus sequence of Lactobacillus delbrueckii subsp. lactis bacteriophage LL-H. FEMS Microbiol Lett. 1994 Mar 1;116(3):315–320. doi: 10.1111/j.1574-6968.1994.tb06721.x. [DOI] [PubMed] [Google Scholar]
  21. Moineau S., Pandian S., Klaenhammer T. R. Evolution of a Lytic Bacteriophage via DNA Acquisition from the Lactococcus lactis Chromosome. Appl Environ Microbiol. 1994 Jun;60(6):1832–1841. doi: 10.1128/aem.60.6.1832-1841.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Murray V. Improved double-stranded DNA sequencing using the linear polymerase chain reaction. Nucleic Acids Res. 1989 Nov 11;17(21):8889–8889. doi: 10.1093/nar/17.21.8889. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Pearson W. R., Lipman D. J. Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2444–2448. doi: 10.1073/pnas.85.8.2444. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Sechaud L., Cluzel P. J., Rousseau M., Baumgartner A., Accolas J. P. Bacteriophages of lactobacilli. Biochimie. 1988 Mar;70(3):401–410. doi: 10.1016/0300-9084(88)90214-3. [DOI] [PubMed] [Google Scholar]
  26. Shimizu-Kadota M., Kiwaki M., Hirokawa H., Tsuchida N. ISL1: a new transposable element in Lactobacillus casei. Mol Gen Genet. 1985;200(2):193–198. doi: 10.1007/BF00425423. [DOI] [PubMed] [Google Scholar]
  27. Shimizu-Kadota M., Sakurai T., Tsuchida N. Prophage Origin of a Virulent Phage Appearing on Fermentations of Lactobacillus casei S-1. Appl Environ Microbiol. 1983 Feb;45(2):669–674. doi: 10.1128/aem.45.2.669-674.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Shimizu-Kadota M., Tsuchida N. Physical mapping of the virion and the prophage DNAs of a temperate Lactobacillus phage phi FSW. J Gen Microbiol. 1984 Feb;130(2):423–430. doi: 10.1099/00221287-130-2-423. [DOI] [PubMed] [Google Scholar]
  29. Trautwetter A., Ritzenthaler P., Alatossava T., Mata-Gilsinger M. Physical and genetic characterization of the genome of Lactobacillus lactis bacteriophage LL-H. J Virol. 1986 Sep;59(3):551–555. doi: 10.1128/jvi.59.3.551-555.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Vasala A., Dupont L., Baumann M., Ritzenthaler P., Alatossava T. Molecular comparison of the structural proteins encoding gene clusters of two related Lactobacillus delbrueckii bacteriophages. J Virol. 1993 Jun;67(6):3061–3068. doi: 10.1128/jvi.67.6.3061-3068.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Vasala A., Välkkilä M., Caldentey J., Alatossava T. Genetic and biochemical characterization of the Lactobacillus delbrueckii subsp. lactis bacteriophage LL-H lysin. Appl Environ Microbiol. 1995 Nov;61(11):4004–4011. doi: 10.1128/aem.61.11.4004-4011.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Yanisch-Perron C., Vieira J., Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. doi: 10.1016/0378-1119(85)90120-9. [DOI] [PubMed] [Google Scholar]
  33. Zwahlen M. C., Hottinger H. Nucleotide sequence of a Lactobacillus delbrueckii gene encoding a minor (UCG) tRNA(ser). Nucleic Acids Res. 1989 Feb 25;17(4):1772–1772. doi: 10.1093/nar/17.4.1772. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES