Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1996 Jun;62(6):1889–1896. doi: 10.1128/aem.62.6.1889-1896.1996

Characterization of a Neocallimastix patriciarum cellulase cDNA (celA) homologous to Trichoderma reesei cellobiohydrolase II.

S Denman 1, G P Xue 1, B Patel 1
PMCID: PMC167968  PMID: 8787388

Abstract

The nucleotide sequence of a cellulase cDNA (celA) from the rumen fungus Neocallimastix patriciarum and the primary structure of the protein which it encodes were characterized. The celA cDNA was 1.95 kb long and had an open reading frame of 1,284 bp, which encoded a polypeptide having 428 amino acid residues. A sequence alignment showed that cellulase A (CELA) exhibited substantial homology with family B cellulases (family 6 glycosyl hydrolases), particularly cellobiohydrolase II from the aerobic fungus Trichoderma reesei. In contrast to previously characterized N. patriciarum glycosyl hydrolases, CELA did not exhibit homology with any other rumen microbial cellulases described previously. Primary structure and function studies in which deletion analysis and a sequence comparison with other well-characterized cellulases were used revealed that CELA consisted of a cellulose-binding domain at the N terminus and a catalytic domain at the C terminus. These two domains were separated by an extremely Asn-rich linker. Deletion of the cellulose-binding domain resulted in a marked decrease in the cellulose-binding ability and activity toward crystalline cellulose. When CELA was expressed in Escherichia coli, it was located predominantly in the periplasmic space, indicating that the signal sequence of CELA was functional in E.coli. Enzymatic studies showed that CELA had an optimal pH of 5.0 and an optimal temperature of 40 degrees C. The specific activity of immunoaffinity-purified CELA against Avicel was 9.7 U/mg of protein, and CELA appeared to be a relatively active cellobiohydrolase compared with the specific activities reported for other cellobiohydrolases, such as T. reesei cellobiohydrolases I and II.

Full Text

The Full Text of this article is available as a PDF (456.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beard C. E., Hefford M. A., Forster R. J., Sontakke S., Teather R. M., Gregg K. A stable and efficient transformation system for Butyrivibrio fibrisolvens OB156. Curr Microbiol. 1995 Feb;30(2):105–109. doi: 10.1007/BF00294191. [DOI] [PubMed] [Google Scholar]
  2. Billon-Grand G., Fiol J. B., Breton A., Bruyère A., Oulhaj Z. DNA of some anaerobic rumen fungi: G + C content determination. FEMS Microbiol Lett. 1991 Aug 15;66(3):267–270. doi: 10.1016/0378-1097(91)90272-c. [DOI] [PubMed] [Google Scholar]
  3. Black G. W., Hazlewood G. P., Xue G. P., Orpin C. G., Gilbert H. J. Xylanase B from Neocallimastix patriciarum contains a non-catalytic 455-residue linker sequence comprised of 57 repeats of an octapeptide. Biochem J. 1994 Apr 15;299(Pt 2):381–387. doi: 10.1042/bj2990381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brownlee A. G. Remarkably AT-rich genomic DNA from the anaerobic fungus Neocallimastix. Nucleic Acids Res. 1989 Feb 25;17(4):1327–1335. doi: 10.1093/nar/17.4.1327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Béguin P. Molecular biology of cellulose degradation. Annu Rev Microbiol. 1990;44:219–248. doi: 10.1146/annurev.mi.44.100190.001251. [DOI] [PubMed] [Google Scholar]
  6. Cheng C., Tsukagoshi N., Udaka S. Nucleotide sequence of the cellobiohydrolase gene from Trichoderma viride. Nucleic Acids Res. 1990 Sep 25;18(18):5559–5559. doi: 10.1093/nar/18.18.5559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cocconcelli P. S., Ferrari E., Rossi F., Bottazzi V. Plasmid transformation of Ruminococcus albus by means of high-voltage electroporation. FEMS Microbiol Lett. 1992 Jul 15;73(3):203–207. doi: 10.1016/0378-1097(92)90631-w. [DOI] [PubMed] [Google Scholar]
  8. Damude H. G., Gilkes N. R., Kilburn D. G., Miller R. C., Jr, Warren R. A. Endoglucanase CasA from alkalophilic Streptomyces strain KSM-9 is a typical member of family B of beta-1,4-glucanases. Gene. 1993 Jan 15;123(1):105–107. doi: 10.1016/0378-1119(93)90547-g. [DOI] [PubMed] [Google Scholar]
  9. Damude H. G., Withers S. G., Kilburn D. G., Miller R. C., Jr, Warren R. A. Site-directed mutation of the putative catalytic residues of endoglucanase CenA from Cellulomonas fimi. Biochemistry. 1995 Feb 21;34(7):2220–2224. doi: 10.1021/bi00007a016. [DOI] [PubMed] [Google Scholar]
  10. Fernández-Abalos J. M., Sánchez P., Coll P. M., Villanueva J. R., Pérez P., Santamaría R. I. Cloning and nucleotide sequence of celA1, and endo-beta-1,4-glucanase-encoding gene from Streptomyces halstedii JM8. J Bacteriol. 1992 Oct;174(20):6368–6376. doi: 10.1128/jb.174.20.6368-6376.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Flint H. J. Molecular genetics of obligate anaerobes from the rumen. FEMS Microbiol Lett. 1994 Sep 1;121(3):259–267. doi: 10.1111/j.1574-6968.1994.tb07110.x. [DOI] [PubMed] [Google Scholar]
  12. Gilbert H. J., Hazlewood G. P., Laurie J. I., Orpin C. G., Xue G. P. Homologous catalytic domains in a rumen fungal xylanase: evidence for gene duplication and prokaryotic origin. Mol Microbiol. 1992 Aug;6(15):2065–2072. doi: 10.1111/j.1365-2958.1992.tb01379.x. [DOI] [PubMed] [Google Scholar]
  13. Gilkes N. R., Henrissat B., Kilburn D. G., Miller R. C., Jr, Warren R. A. Domains in microbial beta-1, 4-glycanases: sequence conservation, function, and enzyme families. Microbiol Rev. 1991 Jun;55(2):303–315. doi: 10.1128/mr.55.2.303-315.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Henrissat B. A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J. 1991 Dec 1;280(Pt 2):309–316. doi: 10.1042/bj2800309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Henrissat B., Bairoch A. New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J. 1993 Aug 1;293(Pt 3):781–788. doi: 10.1042/bj2930781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Koch A., Weigel C. T., Schulz G. Cloning, sequencing, and heterologous expression of a cellulase-encoding cDNA (cbh1) from Penicillium janthinellum. Gene. 1993 Feb 14;124(1):57–65. doi: 10.1016/0378-1119(93)90761-q. [DOI] [PubMed] [Google Scholar]
  17. Kraulis J., Clore G. M., Nilges M., Jones T. A., Pettersson G., Knowles J., Gronenborn A. M. Determination of the three-dimensional solution structure of the C-terminal domain of cellobiohydrolase I from Trichoderma reesei. A study using nuclear magnetic resonance and hybrid distance geometry-dynamical simulated annealing. Biochemistry. 1989 Sep 5;28(18):7241–7257. doi: 10.1021/bi00444a016. [DOI] [PubMed] [Google Scholar]
  18. Lao G., Ghangas G. S., Jung E. D., Wilson D. B. DNA sequences of three beta-1,4-endoglucanase genes from Thermomonospora fusca. J Bacteriol. 1991 Jun;173(11):3397–3407. doi: 10.1128/jb.173.11.3397-3407.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lee J. M., Hu Y., Zhu H., Cheng K. J., Krell P. J., Forsberg C. W. Cloning of a xylanase gene from the ruminal fungus Neocallimastix patriciarum 27 and its expression in Escherichia coli. Can J Microbiol. 1993 Jan;39(1):134–139. doi: 10.1139/m93-020. [DOI] [PubMed] [Google Scholar]
  20. Linder M., Mattinen M. L., Kontteli M., Lindeberg G., Ståhlberg J., Drakenberg T., Reinikainen T., Pettersson G., Annila A. Identification of functionally important amino acids in the cellulose-binding domain of Trichoderma reesei cellobiohydrolase I. Protein Sci. 1995 Jun;4(6):1056–1064. doi: 10.1002/pro.5560040604. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Penttilä M., Lehtovaara P., Nevalainen H., Bhikhabhai R., Knowles J. Homology between cellulase genes of Trichoderma reesei: complete nucleotide sequence of the endoglucanase I gene. Gene. 1986;45(3):253–263. doi: 10.1016/0378-1119(86)90023-5. [DOI] [PubMed] [Google Scholar]
  22. Reinikainen T., Ruohonen L., Nevanen T., Laaksonen L., Kraulis P., Jones T. A., Knowles J. K., Teeri T. T. Investigation of the function of mutated cellulose-binding domains of Trichoderma reesei cellobiohydrolase I. Proteins. 1992 Dec;14(4):475–482. doi: 10.1002/prot.340140408. [DOI] [PubMed] [Google Scholar]
  23. Rouvinen J., Bergfors T., Teeri T., Knowles J. K., Jones T. A. Three-dimensional structure of cellobiohydrolase II from Trichoderma reesei. Science. 1990 Jul 27;249(4967):380–386. doi: 10.1126/science.2377893. [DOI] [PubMed] [Google Scholar]
  24. Saloheimo A., Henrissat B., Hoffrén A. M., Teleman O., Penttilä M. A novel, small endoglucanase gene, egl5, from Trichoderma reesei isolated by expression in yeast. Mol Microbiol. 1994 Jul;13(2):219–228. doi: 10.1111/j.1365-2958.1994.tb00417.x. [DOI] [PubMed] [Google Scholar]
  25. Saloheimo M., Lehtovaara P., Penttilä M., Teeri T. T., Ståhlberg J., Johansson G., Pettersson G., Claeyssens M., Tomme P., Knowles J. K. EGIII, a new endoglucanase from Trichoderma reesei: the characterization of both gene and enzyme. Gene. 1988;63(1):11–22. doi: 10.1016/0378-1119(88)90541-0. [DOI] [PubMed] [Google Scholar]
  26. Sims P., James C., Broda P. The identification, molecular cloning and characterisation of a gene from Phanerochaete chrysosporium that shows strong homology to the exo-cellobiohydrolase I gene from Trichoderma reesei. Gene. 1988 Dec 30;74(2):411–422. doi: 10.1016/0378-1119(88)90174-6. [DOI] [PubMed] [Google Scholar]
  27. Taleb F., Radford A. The cellulase complex of Neurospora crassa: cbh-1 cloning, sequencing and homologies. Gene. 1995 Aug 8;161(1):137–138. doi: 10.1016/0378-1119(95)00288-h. [DOI] [PubMed] [Google Scholar]
  28. Teeri T. T., Lehtovaara P., Kauppinen S., Salovuori I., Knowles J. Homologous domains in Trichoderma reesei cellulolytic enzymes: gene sequence and expression of cellobiohydrolase II. Gene. 1987;51(1):43–52. doi: 10.1016/0378-1119(87)90472-0. [DOI] [PubMed] [Google Scholar]
  29. Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Thomson A. M., Flint H. J. Electroporation induced transformation of Bacteroides ruminicola and Bacteroides uniformis by plasmid DNA. FEMS Microbiol Lett. 1989 Oct 1;52(1-2):101–104. doi: 10.1016/0378-1097(89)90178-x. [DOI] [PubMed] [Google Scholar]
  31. Tomme P., Van Tilbeurgh H., Pettersson G., Van Damme J., Vandekerckhove J., Knowles J., Teeri T., Claeyssens M. Studies of the cellulolytic system of Trichoderma reesei QM 9414. Analysis of domain function in two cellobiohydrolases by limited proteolysis. Eur J Biochem. 1988 Jan 4;170(3):575–581. doi: 10.1111/j.1432-1033.1988.tb13736.x. [DOI] [PubMed] [Google Scholar]
  32. Williams A. G., Orpin C. G. Polysaccharide-degrading enzymes formed by three species of anaerobic rumen fungi grown on a range of carbohydrate substrates. Can J Microbiol. 1987 May;33(5):418–426. doi: 10.1139/m87-071. [DOI] [PubMed] [Google Scholar]
  33. Wong W. K., Gerhard B., Guo Z. M., Kilburn D. G., Warren A. J., Miller R. C., Jr Characterization and structure of an endoglucanase gene cenA of Cellulomonas fimi. Gene. 1986;44(2-3):315–324. doi: 10.1016/0378-1119(86)90196-4. [DOI] [PubMed] [Google Scholar]
  34. Xue G. P., Gobius K. S., Orpin C. G. A novel polysaccharide hydrolase cDNA (celD) from Neocallimastix patriciarum encoding three multi-functional catalytic domains with high endoglucanase, cellobiohydrolase and xylanase activities. J Gen Microbiol. 1992 Nov;138(11):2397–2403. doi: 10.1099/00221287-138-11-2397. [DOI] [PubMed] [Google Scholar]
  35. Xue G. P., Orpin C. G., Gobius K. S., Aylward J. H., Simpson G. D. Cloning and expression of multiple cellulase cDNAs from the anaerobic rumen fungus Neocallimastix patriciarum in Escherichia coli. J Gen Microbiol. 1992 Jul;138(7):1413–1420. doi: 10.1099/00221287-138-7-1413. [DOI] [PubMed] [Google Scholar]
  36. Zhang J. X., Flint H. J. A bifunctional xylanase encoded by the xynA gene of the rumen cellulolytic bacterium Ruminococcus flavefaciens 17 comprises two dissimilar domains linked by an asparagine/glutamine-rich sequence. Mol Microbiol. 1992 Apr;6(8):1013–1023. doi: 10.1111/j.1365-2958.1992.tb02167.x. [DOI] [PubMed] [Google Scholar]
  37. Zhou L., Xue G. P., Orpin C. G., Black G. W., Gilbert H. J., Hazlewood G. P. Intronless celB from the anaerobic fungus Neocallimastix patriciarum encodes a modular family A endoglucanase. Biochem J. 1994 Jan 15;297(Pt 2):359–364. doi: 10.1042/bj2970359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. de Oliviera Azevedo M., Radford A. Sequence of cbh-1 gene of Humicola grisea var. thermoidea. Nucleic Acids Res. 1990 Feb 11;18(3):668–668. doi: 10.1093/nar/18.3.668. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. el-Gogary S., Leite A., Crivellaro O., Eveleigh D. E., el-Dorry H. Mechanism by which cellulose triggers cellobiohydrolase I gene expression in Trichoderma reesei. Proc Natl Acad Sci U S A. 1989 Aug;86(16):6138–6141. doi: 10.1073/pnas.86.16.6138. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES