Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1996 Jun;62(6):1944–1950. doi: 10.1128/aem.62.6.1944-1950.1996

Molecular polymorphism distribution in phenotypically distinct populations of wine yeast strains.

D Nadal 1, B Colomer 1, B Piña 1
PMCID: PMC167972  PMID: 8787392

Abstract

Electrophoretic karyotyping and mitochondrial DNA restriction analysis were used to analyze natural yeast populations from fermenting musts in El Penedès, Spain. Both analyses revealed a considerable degree of polymorphism, indicating heterogeneous natural populations. By specifically designed genetic selection protocols, strains showing potentially interesting phenotypes, such as high tolerance to ethanol and temperature or the ability to grow and to ferment in wine-water-sugar mixtures, were isolated from these natural populations. Genetic analysis showed a strong correlation between the selected phenotypes and mitochondrial DNA polymorphisms. Karyotype analysis revealed several genetically similar yeast lineages in the natural yeast microflora, which we interpret as genetically isolated subpopulations of yeast strains with distinct genetic traits, which may correspond to specific microenvironments. Thus, molecular polymorphism analysis may be useful not only to study the geographical distribution of natural yeast strains but also to identify strains with specific phenotypic properties.

Full Text

The Full Text of this article is available as a PDF (562.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aguilera A., Benítez T. Role of mitochondria in ethanol tolerance of Saccharomyces cerevisiae. Arch Microbiol. 1985 Sep;142(4):389–392. doi: 10.1007/BF00491909. [DOI] [PubMed] [Google Scholar]
  2. Bakalinsky A. T., Snow R. The chromosomal constitution of wine strains of Saccharomyces cerevisiae. Yeast. 1990 Sep-Oct;6(5):367–382. doi: 10.1002/yea.320060503. [DOI] [PubMed] [Google Scholar]
  3. Bidenne C., Blondin B., Dequin S., Vezinhet F. Analysis of the chromosomal DNA polymorphism of wine strains of Saccharomyces cerevisiae. Curr Genet. 1992 Jul;22(1):1–7. doi: 10.1007/BF00351734. [DOI] [PubMed] [Google Scholar]
  4. D'Amore T., Panchal C. J., Russell I., Stewart G. G. A study of ethanol tolerance in yeast. Crit Rev Biotechnol. 1990;9(4):287–304. doi: 10.3109/07388558909036740. [DOI] [PubMed] [Google Scholar]
  5. Gerring S. L., Connelly C., Hieter P. Positional mapping of genes by chromosome blotting and chromosome fragmentation. Methods Enzymol. 1991;194:57–77. doi: 10.1016/0076-6879(91)94007-y. [DOI] [PubMed] [Google Scholar]
  6. Guillamón J. M., Barrio E., Huerta T., Querol A. Rapid characterization of four species of the Saccharomyces sensu stricto complex according to mitochondrial DNA patterns. Int J Syst Bacteriol. 1994 Oct;44(4):708–714. doi: 10.1099/00207713-44-4-708. [DOI] [PubMed] [Google Scholar]
  7. Longo E., Vezinhet F. Chromosomal rearrangements during vegetative growth of a wild strain of Saccharomyces cerevisiae. Appl Environ Microbiol. 1993 Jan;59(1):322–326. doi: 10.1128/aem.59.1.322-326.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Piskur J. Inheritance of the yeast mitochondrial genome. Plasmid. 1994 May;31(3):229–241. doi: 10.1006/plas.1994.1025. [DOI] [PubMed] [Google Scholar]
  9. Querol A., Barrio E. A rapid and simple method for the preparation of yeast mitochondrial DNA. Nucleic Acids Res. 1990 Mar 25;18(6):1657–1657. doi: 10.1093/nar/18.6.1657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Querol A., Barrio E., Huerta T., Ramón D. Molecular monitoring of wine fermentations conducted by active dry yeast strains. Appl Environ Microbiol. 1992 Sep;58(9):2948–2953. doi: 10.1128/aem.58.9.2948-2953.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Querol A., Barrio E., Huerta T., Ramón D. Utilización de técnicas moleculares para la caracterización de levaduras vínicas y el estudio del proceso de vinificación. Microbiologia. 1993 Feb;9(Spec No):76–82. [PubMed] [Google Scholar]
  12. Querol A., Barrio E., Ramón D. Population dynamics of natural Saccharomyces strains during wine fermentation. Int J Food Microbiol. 1994 Mar;21(4):315–323. doi: 10.1016/0168-1605(94)90061-2. [DOI] [PubMed] [Google Scholar]
  13. Shah H. C., Carlson G. P. Alteration by phenobarbital and 3-methyl-cholanthrene of functional and structural changes in rat liver due to carbon tetrachloride inhalation. J Pharmacol Exp Ther. 1975 Apr;193(1):281–292. [PubMed] [Google Scholar]
  14. Sherman F. Getting started with yeast. Methods Enzymol. 1991;194:3–21. doi: 10.1016/0076-6879(91)94004-v. [DOI] [PubMed] [Google Scholar]
  15. Stratford M. Yeast flocculation: a new perspective. Adv Microb Physiol. 1992;33:2–71. [PubMed] [Google Scholar]
  16. The International Community of Yeast Genetics and Molecular Biology. Yeast. 1992 Aug;8 (Suppl A):1–218. [PubMed] [Google Scholar]
  17. Verdier J. M., Stalder R., Roberge M., Amati B., Sentenac A., Gasser S. M. Preparation and characterization of yeast nuclear extracts for efficient RNA polymerase B (II)-dependent transcription in vitro. Nucleic Acids Res. 1990 Dec 11;18(23):7033–7039. doi: 10.1093/nar/18.23.7033. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Versavaud A., Courcoux P., Roulland C., Dulau L., Hallet J. N. Genetic diversity and geographical distribution of wild Saccharomyces cerevisiae strains from the wine-producing area of Charentes, France. Appl Environ Microbiol. 1995 Oct;61(10):3521–3529. doi: 10.1128/aem.61.10.3521-3529.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. de Jonge P., de Jongh F. C., Meijers R., Steensma H. Y., Scheffers W. A. Orthogonal-field-alternation gel electrophoresis banding patterns of DNA from yeasts. Yeast. 1986 Sep;2(3):193–204. doi: 10.1002/yea.320020307. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES