Abstract
The principle of equi-effectivity of the product of intensity and exposure time (principle of Bunsen-Roscoe) of UV irradiation has been assumed to be valid for the inactivation of microorganisms in general. Earlier studies claimed higher survival of Escherichia coli B/r with fractionated irradiation compared with single-exposure survival. However, data on the inactivation effect of protraction of UV irradiation are not available. By means of a specially designed UV irradiation apparatus which secured absolute UV dose measurements throughout the experiments, the effects of variation of UV irradiation intensities (253.7 nm) and exposure times were tested on the inactivation of a bacterial virus (Staphylococcus aureus phage A994), a vegetative bacterial strain (E. coli ATCC 25922), and bacterial spores (Bacillus subtilis ATCC 6633) as well as three haploid laboratory strains (RC43a, YNN281, and YNN282) and two diploid strains (commercial bakery yeast strain and laboratory strain YNN281 x YNN282) or yeast (Saccharomyces cerevisiae) and spores of the latter diploid yeast strain. Each test organism was exposed to three UV intensities (0.02, 0.2, and 2 W/m2), with corresponding exposure times resulting in three dose levels for each intensity. Differences in inactivation rates were tested by analyses of variance and Newman-Keuls tests. Virus and bacteria showed no differences in inactivation rates by variation of intensities and exposure times within selected UV doses; hence, the principle of Bunsen-Roscoe could not be rejected for these strains. However, in the eukaryotic test strains of S. cerevisiae longer exposure times with lower intensities led to enhanced inactivation in both haploid and diploid strains, with a more pronounced effect in the diploid yeast strains, whereas in yeast spores in this dose rate effect could not be observed.
Full Text
The Full Text of this article is available as a PDF (286.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abshire R. L., Dunton H. Resistance of selected strains of Pseudomonas aeruginosa to low-intensity ultraviolet radiation. Appl Environ Microbiol. 1981 Jun;41(6):1419–1423. doi: 10.1128/aem.41.6.1419-1423.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Averbeck D., Averbeck S. Dose-rate effects of 8-methoxypsoralen plus 365-NM irradiation on cell killing in Saccharomyces cerevisiae. Mutat Res. 1978 May;50(2):195–206. doi: 10.1016/0027-5107(78)90024-6. [DOI] [PubMed] [Google Scholar]
- Briza P., Ellinger A., Winkler G., Breitenbach M. Chemical composition of the yeast ascospore wall. The second outer layer consists of chitosan. J Biol Chem. 1988 Aug 15;263(23):11569–11574. [PubMed] [Google Scholar]
- Briza P., Winkler G., Kalchhauser H., Breitenbach M. Dityrosine is a prominent component of the yeast ascospore wall. A proof of its structure. J Biol Chem. 1986 Mar 25;261(9):4288–4294. [PubMed] [Google Scholar]
- Chang J. C., Ossoff S. F., Lobe D. C., Dorfman M. H., Dumais C. M., Qualls R. G., Johnson J. D. UV inactivation of pathogenic and indicator microorganisms. Appl Environ Microbiol. 1985 Jun;49(6):1361–1365. doi: 10.1128/aem.49.6.1361-1365.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Epstein J. H. Photocarcinogenesis, skin cancer, and aging. J Am Acad Dermatol. 1983 Oct;9(4):487–502. doi: 10.1016/s0190-9622(83)70160-x. [DOI] [PubMed] [Google Scholar]
- Esposito R. E., Dresser M., Breitenbach M. Identifying sporulation genes, visualizing synaptonemal complexes, and large-scale spore and spore wall purification. Methods Enzymol. 1991;194:110–131. doi: 10.1016/0076-6879(91)94010-a. [DOI] [PubMed] [Google Scholar]
- Forbes P. D., Blum H. F., Davies R. E. Photocarcinogenesis in hairless mice: dose-response and the influence of dose-delivery. Photochem Photobiol. 1981 Sep;34(3):361–365. [PubMed] [Google Scholar]
- Glassner B. J., Mortimer R. K. Synergistic interactions between RAD5, RAD16 and RAD54, three partially homologous yeast DNA repair genes each in a different repair pathway. Radiat Res. 1994 Jul;139(1):24–33. [PubMed] [Google Scholar]
- Harm W. Effects of dose fractionation on ultraviolet survival of Escherichia coli. Photochem Photobiol. 1968 Jan;7(1):73–86. doi: 10.1111/j.1751-1097.1968.tb05831.x. [DOI] [PubMed] [Google Scholar]
- Kassir Y., Simchen G. Monitoring meiosis and sporulation in Saccharomyces cerevisiae. Methods Enzymol. 1991;194:94–110. doi: 10.1016/0076-6879(91)94009-2. [DOI] [PubMed] [Google Scholar]
- Kiefer J., Feige M. The significance of DNA double-strand breaks in the UV inactivation of yeast cells. Mutat Res. 1993 May;299(3-4):219–224. doi: 10.1016/0165-1218(93)90098-x. [DOI] [PubMed] [Google Scholar]
- Kilbey B. J. The analysis of a dose-rate effect found with a mutagenic chemical. Mutat Res. 1974 Aug;26(4):249–256. doi: 10.1016/s0027-5107(74)80022-9. [DOI] [PubMed] [Google Scholar]
- Littlefield N. A., Gaylor D. W. Influence of total dose and dose rate in carcinogenicity studies. J Toxicol Environ Health. 1985;15(5):545–550. doi: 10.1080/15287398509530684. [DOI] [PubMed] [Google Scholar]
- Powers E. L., Cross M., Varga C. J. A dose-rate effect in the ultraviolet inactivation of bacterial spores. Photochem Photobiol. 1974 Apr;19(4):273–276. doi: 10.1111/j.1751-1097.1974.tb06511.x. [DOI] [PubMed] [Google Scholar]
- Sommer R., Weber G., Cabaj A., Wekerle J., Keck G., Schauberger G. UV-Inaktivierung von Mikroorganismen in Wasser. Zentralbl Hyg Umweltmed. 1989 Dec;189(3):214–224. [PubMed] [Google Scholar]
- Stadler D., Macleod H., Loo M. Repair-resistant mutation in Neurospora. Genetics. 1987 Jun;116(2):207–214. doi: 10.1093/genetics/116.2.207. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Steinhoff D., Gad S. C., Hatfield G. K., Mohr U. Carcinogenicity study with sodium dichromate in rats. Exp Pathol. 1986;30(3):129–141. doi: 10.1016/s0232-1513(86)80085-8. [DOI] [PubMed] [Google Scholar]
