Abstract
The gene enpg-1, encoding the major extracellular endopolygalacturonase (endoPG) purified from culture filtrates of the chestnut blight fungus, Cryphonectria parasitica, was cloned and characterized. The deduced mature enpg-1 protein product, ENPG-1, had a calculated molecular mass of 34.5 kDa and a pI of 7.2, consistent with empirically derived values for the purified enzyme, and had 66% identity with an endoPG from the maize pathogen Cochliobolus carbonum. Targeted disruption of enpg-1 was accomplished by homologous recombination with a cloned copy of the gene that contained the Escherichia coli hygromycin B phosphotransferase gene (hph) inserted into exon 1. enpg-1 disruption resulted in no reduction in canker formation on dormant American chestnut stems. Unexpectedly, the level of polygalacturonase (PG) activity measured in cankered bark tissue infected with enpg-1 disruptants was indistinguishable from that found in canker tissue infected with virulent strain EP155. Isoelectric focusing and activity gel analysis of PG activity extracted from canker bark tissue revealed ENPG-1 to be a minor (less than 5%) activity component in tissue infected with the virulent strain and to be absent in tissue infected with the disruption mutants. The predominant activity in both canker samples consisted of two previously undetected acidic PG forms that appear absent in C. parasitica culture filtrates. We conclude from these results that the major C. parasitica extracellular endoPG produced in culture, ENPG-1, does not play a significant role in fungal virulence. However, the identification of two acidic PG activities expressed predominantly, if not exclusively, in planta provides new opportunities for examining the importance of PGs in C. parasitica pathogenesis.
Full Text
The Full Text of this article is available as a PDF (659.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anagnostakis S. L. Biological control of chestnut blight. Science. 1982 Jan 29;215(4532):466–471. doi: 10.1126/science.215.4532.466. [DOI] [PubMed] [Google Scholar]
- Bussink H. J., Brouwer K. B., de Graaff L. H., Kester H. C., Visser J. Identification and characterization of a second polygalacturonase gene of Aspergillus niger. Curr Genet. 1991 Sep;20(4):301–307. doi: 10.1007/BF00318519. [DOI] [PubMed] [Google Scholar]
- Choi G. H., Chen B., Nuss D. L. Virus-mediated or transgenic suppression of a G-protein alpha subunit and attenuation of fungal virulence. Proc Natl Acad Sci U S A. 1995 Jan 3;92(1):305–309. doi: 10.1073/pnas.92.1.305. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Choi G. H., Larson T. G., Nuss D. L. Molecular analysis of the laccase gene from the chestnut blight fungus and selective suppression of its expression in an isogenic hypovirulent strain. Mol Plant Microbe Interact. 1992 Mar-Apr;5(2):119–128. doi: 10.1094/mpmi-5-119. [DOI] [PubMed] [Google Scholar]
- Choi G. H., Nuss D. L. Hypovirulence of chestnut blight fungus conferred by an infectious viral cDNA. Science. 1992 Aug 7;257(5071):800–803. doi: 10.1126/science.1496400. [DOI] [PubMed] [Google Scholar]
- Cullen D., Leong S. A., Wilson L. J., Henner D. J. Transformation of Aspergillus nidulans with the hygromycin-resistance gene, hph. Gene. 1987;57(1):21–26. doi: 10.1016/0378-1119(87)90172-7. [DOI] [PubMed] [Google Scholar]
- Larson T. G., Choi G. H., Nuss D. L. Regulatory pathways governing modulation of fungal gene expression by a virulence-attenuating mycovirus. EMBO J. 1992 Dec;11(12):4539–4548. doi: 10.1002/j.1460-2075.1992.tb05555.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Saiki R. K., Gelfand D. H., Stoffel S., Scharf S. J., Higuchi R., Horn G. T., Mullis K. B., Erlich H. A. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 1988 Jan 29;239(4839):487–491. doi: 10.1126/science.2448875. [DOI] [PubMed] [Google Scholar]
- Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scott-Craig J. S., Panaccione D. G., Cervone F., Walton J. D. Endopolygalacturonase is not required for pathogenicity of Cochliobolus carbonum on maize. Plant Cell. 1990 Dec;2(12):1191–1200. doi: 10.1105/tpc.2.12.1191. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Varley D. A., Podila G. K., Hiremath S. T. Cutinase in Cryphonectria parasitica, the chestnut blight fungus: suppression of cutinase gene expression in isogenic hypovirulent strains containing double-stranded RNAs. Mol Cell Biol. 1992 Oct;12(10):4539–4544. doi: 10.1128/mcb.12.10.4539. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walton J. D. Deconstructing the Cell Wall. Plant Physiol. 1994 Apr;104(4):1113–1118. doi: 10.1104/pp.104.4.1113. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang P., Nuss D. L. Induction of a Cryphonectria parasitica cellobiohydrolase I gene is suppressed by hypovirus infection and regulated by a GTP-binding-protein-linked signaling pathway involved in fungal pathogenesis. Proc Natl Acad Sci U S A. 1995 Dec 5;92(25):11529–11533. doi: 10.1073/pnas.92.25.11529. [DOI] [PMC free article] [PubMed] [Google Scholar]
- von Heijne G. A new method for predicting signal sequence cleavage sites. Nucleic Acids Res. 1986 Jun 11;14(11):4683–4690. doi: 10.1093/nar/14.11.4683. [DOI] [PMC free article] [PubMed] [Google Scholar]
