Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1996 Jun;62(6):2029–2036. doi: 10.1128/aem.62.6.2029-2036.1996

Typing of rhizobia by PCR DNA fingerprinting and PCR-restriction fragment length polymorphism analysis of chromosomal and symbiotic gene regions: application to Rhizobium leguminosarum and its different biovars.

G Laguerre 1, P Mavingui 1, M R Allard 1, M P Charnay 1, P Louvrier 1, S I Mazurier 1, L Rigottier-Gois 1, N Amarger 1
PMCID: PMC167981  PMID: 8787401

Abstract

Characterization of 43 strains of Rhizobium leguminosarum biovars viciae, trifolii, and phaseoli was performed by two methodologies based on PCR amplification, i.e., PCR DNA fingerprinting of interrepeat sequences and restriction fragment length polymorphism (RFLP) analysis of PCR -amplified chromosomal and symbiotic gene regions. Groupings generated by PCR DNA fingerprinting with either extragenic palindromic repetitive primers or two different single random primers were correlated with similar levels of resolution. Although less discriminating, PCR-RFLP analysis of intergenic spacer between genes coding for 16S and 23S rRNA (16S and 23S rDNA) yielded intraspecific polymorphisms. The classification of strains was independent of the biovar status and was in agreement with those obtained by PCR DNA fingerprinting. Intrabiovar variation within symbiotic gene regions was detected by PCR-RFLP analysis of nifDK and nodD gene regions, but the strains were grouped according to the biovar. The rDNA intergenic spacer and nif primers were verified to be universal for rhizobial species by testing of various reference strains, whereas the nod primers designed in this study were biovar or species specific for R. leguminosarum and Rhizobium etli. Classifications of R. leguminosarum strains by the PCR-based methods were correlated with those previously obtained by conventional total DNA restriction profile comparisons and RFLP analysis using chromosomal and symbiotic gene probes. Ranges of discriminating powers were also equivalent between the two approaches. However, the PCR-based methods are much less time-consuming and are therefore more convenient.

Full Text

The Full Text of this article is available as a PDF (427.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barry T., Colleran G., Glennon M., Dunican L. K., Gannon F. The 16s/23s ribosomal spacer region as a target for DNA probes to identify eubacteria. PCR Methods Appl. 1991 Aug;1(1):51–56. doi: 10.1101/gr.1.1.51. [DOI] [PubMed] [Google Scholar]
  2. Coutinho H. L., Handley B. A., Kay H. E., Stevenson L., Beringer J. E. The effect of colony age on PCR fingerprinting. Lett Appl Microbiol. 1993 Dec;17(6):282–284. doi: 10.1111/j.1472-765x.1993.tb01467.x. [DOI] [PubMed] [Google Scholar]
  3. Davis E. O., Johnston A. W. Analysis of three nodD genes in Rhizobium leguminosarum biovar phaseoli; nodD1 is preceded by noIE, a gene whose product is secreted from the cytoplasm. Mol Microbiol. 1990 Jun;4(6):921–932. doi: 10.1111/j.1365-2958.1990.tb00665.x. [DOI] [PubMed] [Google Scholar]
  4. Demezas D. H., Reardon T. B., Watson J. M., Gibson A. H. Genetic Diversity among Rhizobium leguminosarum bv. Trifolii Strains Revealed by Allozyme and Restriction Fragment Length Polymorphism Analyses. Appl Environ Microbiol. 1991 Dec;57(12):3489–3495. doi: 10.1128/aem.57.12.3489-3495.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dobert R. C., Breil B. T., Triplett E. W. DNA sequence of the common nodulation genes of Bradyrhizobium elkanii and their phylogenetic relationship to those of other nodulating bacteria. Mol Plant Microbe Interact. 1994 Sep-Oct;7(5):564–572. doi: 10.1094/mpmi-7-0564. [DOI] [PubMed] [Google Scholar]
  6. Dooley J. J., Harrison S. P., Mytton L. R., Dye M., Cresswell A., Skot L., Beeching J. R. Phylogenetic grouping and identification of Rhizobium isolates on the basis of random amplified polymorphic DNA profiles. Can J Microbiol. 1993 Jul;39(7):665–673. doi: 10.1139/m93-096. [DOI] [PubMed] [Google Scholar]
  7. Eardly B. D., Young J. P., Selander R. K. Phylogenetic position of Rhizobium sp. strain Or 191, a symbiont of both Medicago sativa and Phaseolus vulgaris, based on partial sequences of the 16S rRNA and nifH genes. Appl Environ Microbiol. 1992 Jun;58(6):1809–1815. doi: 10.1128/aem.58.6.1809-1815.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Frothingham R., Wilson K. H. Sequence-based differentiation of strains in the Mycobacterium avium complex. J Bacteriol. 1993 May;175(10):2818–2825. doi: 10.1128/jb.175.10.2818-2825.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Harrison S. P., Mytton L. R., Skøt L., Dye M., Cresswell A. Characterisation of Rhizobium isolates by amplification of DNA polymorphisms using random primers. Can J Microbiol. 1992 Oct;38(10):1009–1015. doi: 10.1139/m92-166. [DOI] [PubMed] [Google Scholar]
  10. Jamann S., Fernandez M. P., Normand P. Typing method for N2-fixing bacteria based on PCR-RFLP--application to the characterization of Frankia strains. Mol Ecol. 1993 Feb;2(1):17–26. doi: 10.1111/j.1365-294x.1993.tb00095.x. [DOI] [PubMed] [Google Scholar]
  11. Jensen M. A., Straus N. Effect of PCR conditions on the formation of heteroduplex and single-stranded DNA products in the amplification of bacterial ribosomal DNA spacer regions. PCR Methods Appl. 1993 Dec;3(3):186–194. doi: 10.1101/gr.3.3.186. [DOI] [PubMed] [Google Scholar]
  12. Jensen M. A., Webster J. A., Straus N. Rapid identification of bacteria on the basis of polymerase chain reaction-amplified ribosomal DNA spacer polymorphisms. Appl Environ Microbiol. 1993 Apr;59(4):945–952. doi: 10.1128/aem.59.4.945-952.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Judd A. K., Schneider M., Sadowsky M. J., de Bruijn F. J. Use of repetitive sequences and the polymerase chain reaction technique to classify genetically related Bradyrhizobium japonicum serocluster 123 strains. Appl Environ Microbiol. 1993 Jun;59(6):1702–1708. doi: 10.1128/aem.59.6.1702-1708.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kaijalainen S., Lindström K. Restriction fragment length polymorphism analysis of Rhizobium galegae strains. J Bacteriol. 1989 Oct;171(10):5561–5566. doi: 10.1128/jb.171.10.5561-5566.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Laguerre G., Allard M. R., Revoy F., Amarger N. Rapid Identification of Rhizobia by Restriction Fragment Length Polymorphism Analysis of PCR-Amplified 16S rRNA Genes. Appl Environ Microbiol. 1994 Jan;60(1):56–63. doi: 10.1128/aem.60.1.56-63.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Laguerre G., Fernandez M. P., Edel V., Normand P., Amarger N. Genomic heterogeneity among French Rhizobium strains isolated from Phaseolus vulgaris L. Int J Syst Bacteriol. 1993 Oct;43(4):761–767. doi: 10.1099/00207713-43-4-761. [DOI] [PubMed] [Google Scholar]
  17. Leung K., Strain S. R., de Bruijn F. J., Bottomley P. J. Genotypic and Phenotypic Comparisons of Chromosomal Types within an Indigenous Soil Population of Rhizobium leguminosarum bv. trifolii. Appl Environ Microbiol. 1994 Feb;60(2):416–426. doi: 10.1128/aem.60.2.416-426.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Matar G. M., Swaminathan B., Hunter S. B., Slater L. N., Welch D. F. Polymerase chain reaction-based restriction fragment length polymorphism analysis of a fragment of the ribosomal operon from Rochalimaea species for subtyping. J Clin Microbiol. 1993 Jul;31(7):1730–1734. doi: 10.1128/jcm.31.7.1730-1734.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Navarro E., Simonet P., Normand P., Bardin R. Characterization of natural populations of Nitrobacter spp. using PCR/RFLP analysis of the ribosomal intergenic spacer. Arch Microbiol. 1992;157(2):107–115. doi: 10.1007/BF00245277. [DOI] [PubMed] [Google Scholar]
  20. Nour S. M., Cleyet-Marel J. C., Beck D., Effosse A., Fernandez M. P. Genotypic and phenotypic diversity of Rhizobium isolated from chickpea (Cicer arietinum L.). Can J Microbiol. 1994 May;40(5):345–354. doi: 10.1139/m94-057. [DOI] [PubMed] [Google Scholar]
  21. Ponsonnet C., Nesme X. Identification of Agrobacterium strains by PCR-RFLP analysis of pTi and chromosomal regions. Arch Microbiol. 1994;161(4):300–309. doi: 10.1007/BF00303584. [DOI] [PubMed] [Google Scholar]
  22. Schofield P. R., Gibson A. H., Dudman W. F., Watson J. M. Evidence for genetic exchange and recombination of Rhizobium symbiotic plasmids in a soil population. Appl Environ Microbiol. 1987 Dec;53(12):2942–2947. doi: 10.1128/aem.53.12.2942-2947.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Schofield P. R., Watson J. M. DNA sequence of Rhizobium trifolii nodulation genes reveals a reiterated and potentially regulatory sequence preceding nodABC and nodFE. Nucleic Acids Res. 1986 Apr 11;14(7):2891–2903. doi: 10.1093/nar/14.7.2891. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Segovia L., Young J. P., Martínez-Romero E. Reclassification of American Rhizobium leguminosarum biovar phaseoli type I strains as Rhizobium etli sp. nov. Int J Syst Bacteriol. 1993 Apr;43(2):374–377. doi: 10.1099/00207713-43-2-374. [DOI] [PubMed] [Google Scholar]
  25. Squartini A., van Veen R. J., Regensburg-Tuink T., Hooykaas P. J., Nuti M. P. Identification and characterization of the nodD gene in Rhizobium leguminosarum strain 1001. Mol Plant Microbe Interact. 1988 Mar;1(3):145–149. doi: 10.1094/mpmi-1-145. [DOI] [PubMed] [Google Scholar]
  26. Ueda T., Suga Y., Yahiro N., Matsuguchi T. Phylogeny of Sym plasmids of rhizobia by PCR-based sequencing of a nodC segment. J Bacteriol. 1995 Jan;177(2):468–472. doi: 10.1128/jb.177.2.468-472.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Versalovic J., Koeuth T., Lupski J. R. Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res. 1991 Dec 25;19(24):6823–6831. doi: 10.1093/nar/19.24.6823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Willems A., Collins M. D. Phylogenetic analysis of rhizobia and agrobacteria based on 16S rRNA gene sequences. Int J Syst Bacteriol. 1993 Apr;43(2):305–313. doi: 10.1099/00207713-43-2-305. [DOI] [PubMed] [Google Scholar]
  29. Woese C. R. Bacterial evolution. Microbiol Rev. 1987 Jun;51(2):221–271. doi: 10.1128/mr.51.2.221-271.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Yanagi M., Yamasato K. Phylogenetic analysis of the family Rhizobiaceae and related bacteria by sequencing of 16S rRNA gene using PCR and DNA sequencer. FEMS Microbiol Lett. 1993 Feb 15;107(1):115–120. doi: 10.1111/j.1574-6968.1993.tb06014.x. [DOI] [PubMed] [Google Scholar]
  31. Young J. P., Downer H. L., Eardly B. D. Phylogeny of the phototrophic rhizobium strain BTAi1 by polymerase chain reaction-based sequencing of a 16S rRNA gene segment. J Bacteriol. 1991 Apr;173(7):2271–2277. doi: 10.1128/jb.173.7.2271-2277.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. de Bruijn F. J. Use of repetitive (repetitive extragenic palindromic and enterobacterial repetitive intergeneric consensus) sequences and the polymerase chain reaction to fingerprint the genomes of Rhizobium meliloti isolates and other soil bacteria. Appl Environ Microbiol. 1992 Jul;58(7):2180–2187. doi: 10.1128/aem.58.7.2180-2187.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. van Belkum A., Quint W. G., de Pauw B. E., Melchers W. J., Meis J. F. Typing of Aspergillus species and Aspergillus fumigatus isolates by interrepeat polymerase chain reaction. J Clin Microbiol. 1993 Sep;31(9):2502–2505. doi: 10.1128/jcm.31.9.2502-2505.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. van Rhijn P. J., Feys B., Verreth C., Vanderleyden J. Multiple copies of nodD in Rhizobium tropici CIAT899 and BR816. J Bacteriol. 1993 Jan;175(2):438–447. doi: 10.1128/jb.175.2.438-447.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. van Rhijn P., Vanderleyden J. The Rhizobium-plant symbiosis. Microbiol Rev. 1995 Mar;59(1):124–142. doi: 10.1128/mr.59.1.124-142.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES