Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1996 Jun;62(6):2053–2058. doi: 10.1128/aem.62.6.2053-2058.1996

Evaluation of strains isolated by growth on naphthalene and biphenyl for hybridization of genes to dioxygenase probes and polychlorinated biphenyl-degrading ability.

V H Pellizari 1, S Bezborodnikov 1, J F Quensen 3rd 1, J M Tiedje 1
PMCID: PMC167982  PMID: 8787402

Abstract

Approximately equal numbers of bacteria were isolated from primarily tropical soils by growth on biphenyl and naphthalene to compare their competence in polychlorinated biphenyl (PCB) degradation. The strains isolated by growth on biphenyl catalyzed more extensive PCB degradation than the strains isolated by growth on naphthalene, suggesting that naphthalene cocontamination may be only partially effective in stimulating the cometabolism of lower chlorinated PCBs. Probes were made from the bph, nah, and tod genes encoding the large iron iron sulfur protein of the dioxygenase complex and hybridized to 19 different strains. The hybridization patterns did not correlate well with the substrates of isolation, suggesting that there is considerable diversity in these genes in nature and that probe hybridization is not a reliable indication of catabolic capacity. The strains with the most extensive PCB degradation capacity did strongly hybridize to the bph probe, but a few strains that exhibited strong hybridization had poor PCB-degrading ability. Of the 19 strains studied, 5 hybridized to more than one probe and 2, including one strong PCB degrader, hybridized to all three probes. Southern blots showed that the bph and nah probes hybridized to separate bands, suggesting that multiple dioxygenases were present. Multiple dioxygenases may be an important feature of competitive decomposers in nature and hence may not be rare. Most of the isolates identified were members of the beta subgroup of the Proteobacteria, a few were gram positive, and none were true Pseudomonas species.

Full Text

The Full Text of this article is available as a PDF (485.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahmed M., Focht D. D. Degradation of polychlorinated biphenyls by two species of Achromobacter. Can J Microbiol. 1973 Jan;19(1):47–52. doi: 10.1139/m73-007. [DOI] [PubMed] [Google Scholar]
  2. Asturias J. A., Timmis K. N. Three different 2,3-dihydroxybiphenyl-1,2-dioxygenase genes in the gram-positive polychlorobiphenyl-degrading bacterium Rhodococcus globerulus P6. J Bacteriol. 1993 Aug;175(15):4631–4640. doi: 10.1128/jb.175.15.4631-4640.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bedard D. L., Unterman R., Bopp L. H., Brennan M. J., Haberl M. L., Johnson C. Rapid assay for screening and characterizing microorganisms for the ability to degrade polychlorinated biphenyls. Appl Environ Microbiol. 1986 Apr;51(4):761–768. doi: 10.1128/aem.51.4.761-768.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Boronin A. M., Tsoi T. V., Kosheleva I. A., Arinbasarov M. U., Adanin V. M. Klonirovanie genov pervichnykh étapov okisleniia naftalina Pseudomonas putida v kletkakh Escherichia coli. Genetika. 1989 Feb;25(2):226–237. [PubMed] [Google Scholar]
  5. Erickson B. D., Mondello F. J. Enhanced biodegradation of polychlorinated biphenyls after site-directed mutagenesis of a biphenyl dioxygenase gene. Appl Environ Microbiol. 1993 Nov;59(11):3858–3862. doi: 10.1128/aem.59.11.3858-3862.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fulthorpe R. R., McGowan C., Maltseva O. V., Holben W. E., Tiedje J. M. 2,4-Dichlorophenoxyacetic acid-degrading bacteria contain mosaics of catabolic genes. Appl Environ Microbiol. 1995 Sep;61(9):3274–3281. doi: 10.1128/aem.61.9.3274-3281.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Furukawa K. Molecular genetics and evolutionary relationship of PCB-degrading bacteria. Biodegradation. 1994 Dec;5(3-4):289–300. doi: 10.1007/BF00696466. [DOI] [PubMed] [Google Scholar]
  8. Haigler B. E., Pettigrew C. A., Spain J. C. Biodegradation of mixtures of substituted benzenes by Pseudomonas sp. strain JS150. Appl Environ Microbiol. 1992 Jul;58(7):2237–2244. doi: 10.1128/aem.58.7.2237-2244.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Johnson G. R., Olsen R. H. Nucleotide sequence analysis of genes encoding a toluene/benzene-2-monooxygenase from Pseudomonas sp. strain JS150. Appl Environ Microbiol. 1995 Sep;61(9):3336–3346. doi: 10.1128/aem.61.9.3336-3346.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kuhm A. E., Stolz A., Knackmuss H. J. Metabolism of naphthalene by the biphenyl-degrading bacterium Pseudomonas paucimobilis Q1. Biodegradation. 1991;2(2):115–120. doi: 10.1007/BF00114601. [DOI] [PubMed] [Google Scholar]
  11. Kutsuna M., Someda K., Morita K., Yamanouchi Y., Kurimoto T., Kawamura Y., Matsumura H. [Ischemic cerebral symptoms after subarachnoid hemorrhage due to aneurysmal rupture (author's transl)]. No Shinkei Geka. 1978 Jun;6(6):543–548. [PubMed] [Google Scholar]
  12. Quensen John F., Boyd Stephen A., Tiedje James M. Dechlorination of Four Commercial Polychlorinated Biphenyl Mixtures (Aroclors) by Anaerobic Microorganisms from Sediments. Appl Environ Microbiol. 1990 Aug;56(8):2360–2369. doi: 10.1128/aem.56.8.2360-2369.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Rosselló-Mora R. A., Lalucat J., García-Valdés E. Comparative biochemical and genetic analysis of naphthalene degradation among Pseudomonas stutzeri strains. Appl Environ Microbiol. 1994 Mar;60(3):966–972. doi: 10.1128/aem.60.3.966-972.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Seto M., Kimbara K., Shimura M., Hatta T., Fukuda M., Yano K. A Novel Transformation of Polychlorinated Biphenyls by Rhodococcus sp. Strain RHA1. Appl Environ Microbiol. 1995 Sep;61(9):3353–3358. doi: 10.1128/aem.61.9.3353-3358.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Taira K., Hirose J., Hayashida S., Furukawa K. Analysis of bph operon from the polychlorinated biphenyl-degrading strain of Pseudomonas pseudoalcaligenes KF707. J Biol Chem. 1992 Mar 5;267(7):4844–4853. [PubMed] [Google Scholar]
  16. Tsoi T. V., Kosheleva I. A., Zamaraev V. S., Trelina O. V., Selifonov S. A. Klonirovanie i ékspressiia gena Pseudomonas putida, kontroliruiushchego katekhol-2,3-oksigenaznuiu aktivnost' v kletkakh Escherichia coli. Genetika. 1988 Sep;24(9):1550–1561. [PubMed] [Google Scholar]
  17. Williams P. A., Sayers J. R. The evolution of pathways for aromatic hydrocarbon oxidation in Pseudomonas. Biodegradation. 1994 Dec;5(3-4):195–217. doi: 10.1007/BF00696460. [DOI] [PubMed] [Google Scholar]
  18. Zylstra G. J., Gibson D. T. Toluene degradation by Pseudomonas putida F1. Nucleotide sequence of the todC1C2BADE genes and their expression in Escherichia coli. J Biol Chem. 1989 Sep 5;264(25):14940–14946. [PubMed] [Google Scholar]
  19. de Bruijn F. J. Use of repetitive (repetitive extragenic palindromic and enterobacterial repetitive intergeneric consensus) sequences and the polymerase chain reaction to fingerprint the genomes of Rhizobium meliloti isolates and other soil bacteria. Appl Environ Microbiol. 1992 Jul;58(7):2180–2187. doi: 10.1128/aem.58.7.2180-2187.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES