Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1996 Jun;62(6):2169–2173. doi: 10.1128/aem.62.6.2169-2173.1996

A marine oligobacterium harboring genes known to be part of aromatic hydrocarbon degradation pathways of soil pseudomonads.

Y Wang 1, P C Lau 1, D K Button 1
PMCID: PMC167995  PMID: 8787414

Abstract

The far-ranging distribution of genes for aromatic hydrocarbon catabolism, predominantly studied in soil pseudomonads, is extended to a marine oligobacterium by finding five homologous sequences in a 5.7-kb chromosomal DNA from a new isolate, Cycloclasticus oligotrophus RB1. RB1 is capable of growth in unamended seawater or mineral salts media supplemented with a variety of aromatic compounds, including toluene, o-, m-, or p-xylenes, as sole carbon sources. The five open reading frames, designated xylM, K, G, C1, and C2, are 57% A+T-rich. XylM is predicted to be an integral membrane protein; XylK and XylG possess glutathione S-transferase (GST) and 2-hydroxy-5methyl-6-oxohexa2,4-dienoate dehydrogenase activities, respectively; XylC1C2 are homologs of the large and small subunits of the iron sulfur protein component of the biphenyl dioxygenase (e.g., BphA1A2).

Full Text

The Full Text of this article is available as a PDF (351.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Button D. K. Biochemical basis for whole-cell uptake kinetics: specific affinity, oligotrophic capacity, and the meaning of the michaelis constant. Appl Environ Microbiol. 1991 Jul;57(7):2033–2038. doi: 10.1128/aem.57.7.2033-2038.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Button D. K., Schut F., Quang P., Martin R., Robertson B. R. Viability and isolation of marine bacteria by dilution culture: theory, procedures, and initial results. Appl Environ Microbiol. 1993 Mar;59(3):881–891. doi: 10.1128/aem.59.3.881-891.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Dyksterhouse S. E., Gray J. P., Herwig R. P., Lara J. C., Staley J. T. Cycloclasticus pugetii gen. nov., sp. nov., an aromatic hydrocarbon-degrading bacterium from marine sediments. Int J Syst Bacteriol. 1995 Jan;45(1):116–123. doi: 10.1099/00207713-45-1-116. [DOI] [PubMed] [Google Scholar]
  4. Furukawa K., Hirose J., Suyama A., Zaiki T., Hayashida S. Gene components responsible for discrete substrate specificity in the metabolism of biphenyl (bph operon) and toluene (tod operon). J Bacteriol. 1993 Aug;175(16):5224–5232. doi: 10.1128/jb.175.16.5224-5232.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Habig W. H., Pabst M. J., Jakoby W. B. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem. 1974 Nov 25;249(22):7130–7139. [PubMed] [Google Scholar]
  6. Hofer B., Backhaus S., Timmis K. N. The biphenyl/polychlorinated biphenyl-degradation locus (bph) of Pseudomonas sp. LB400 encodes four additional metabolic enzymes. Gene. 1994 Jun 24;144(1):9–16. doi: 10.1016/0378-1119(94)90196-1. [DOI] [PubMed] [Google Scholar]
  7. Inoue J., Shaw J. P., Rekik M., Harayama S. Overlapping substrate specificities of benzaldehyde dehydrogenase (the xylC gene product) and 2-hydroxymuconic semialdehyde dehydrogenase (the xylG gene product) encoded by TOL plasmid pWW0 of Pseudomonas putida. J Bacteriol. 1995 Mar;177(5):1196–1201. doi: 10.1128/jb.177.5.1196-1201.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kikuchi Y., Yasukochi Y., Nagata Y., Fukuda M., Takagi M. Nucleotide sequence and functional analysis of the meta-cleavage pathway involved in biphenyl and polychlorinated biphenyl degradation in Pseudomonas sp. strain KKS102. J Bacteriol. 1994 Jul;176(14):4269–4276. doi: 10.1128/jb.176.14.4269-4276.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Leisinger T., Bader R., Hermann R., Schmid-Appert M., Vuilleumier S. Microbes, enzymes and genes involved in dichloromethane utilization. Biodegradation. 1994 Dec;5(3-4):237–248. doi: 10.1007/BF00696462. [DOI] [PubMed] [Google Scholar]
  10. Mason J. R., Cammack R. The electron-transport proteins of hydroxylating bacterial dioxygenases. Annu Rev Microbiol. 1992;46:277–305. doi: 10.1146/annurev.mi.46.100192.001425. [DOI] [PubMed] [Google Scholar]
  11. Meyer D. J., Coles B., Pemble S. E., Gilmore K. S., Fraser G. M., Ketterer B. Theta, a new class of glutathione transferases purified from rat and man. Biochem J. 1991 Mar 1;274(Pt 2):409–414. doi: 10.1042/bj2740409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Mueller J. G., Chapman P. J., Blattmann B. O., Pritchard P. H. Isolation and characterization of a fluoranthene-utilizing strain of Pseudomonas paucimobilis. Appl Environ Microbiol. 1990 Apr;56(4):1079–1086. doi: 10.1128/aem.56.4.1079-1086.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Nordlund I., Shingler V. Nucleotide sequences of the meta-cleavage pathway enzymes 2-hydroxymuconic semialdehyde dehydrogenase and 2-hydroxymuconic semialdehyde hydrolase from Pseudomonas CF600. Biochim Biophys Acta. 1990 Jun 21;1049(2):227–230. doi: 10.1016/0167-4781(90)90046-5. [DOI] [PubMed] [Google Scholar]
  14. Orser C. S., Lange C. C. Molecular analysis of pentachlorophenol degradation. Biodegradation. 1994 Dec;5(3-4):277–288. doi: 10.1007/BF00696465. [DOI] [PubMed] [Google Scholar]
  15. Schut F., de Vries E. J., Gottschal J. C., Robertson B. R., Harder W., Prins R. A., Button D. K. Isolation of Typical Marine Bacteria by Dilution Culture: Growth, Maintenance, and Characteristics of Isolates under Laboratory Conditions. Appl Environ Microbiol. 1993 Jul;59(7):2150–2160. doi: 10.1128/aem.59.7.2150-2160.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Taira K., Hirose J., Hayashida S., Furukawa K. Analysis of bph operon from the polychlorinated biphenyl-degrading strain of Pseudomonas pseudoalcaligenes KF707. J Biol Chem. 1992 Mar 5;267(7):4844–4853. [PubMed] [Google Scholar]
  17. Wang Y., Garnon J., Labbé D., Bergeron H., Lau P. C. Sequence and expression of the bpdC1C2BADE genes involved in the initial steps of biphenyl/chlorobiphenyl degradation by Rhodococcus sp. M5. Gene. 1995 Oct 16;164(1):117–122. doi: 10.1016/0378-1119(95)00448-f. [DOI] [PubMed] [Google Scholar]
  18. Williams P. A., Sayers J. R. The evolution of pathways for aromatic hydrocarbon oxidation in Pseudomonas. Biodegradation. 1994 Dec;5(3-4):195–217. doi: 10.1007/BF00696460. [DOI] [PubMed] [Google Scholar]
  19. Zylstra G. J., Gibson D. T. Toluene degradation by Pseudomonas putida F1. Nucleotide sequence of the todC1C2BADE genes and their expression in Escherichia coli. J Biol Chem. 1989 Sep 5;264(25):14940–14946. [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES