Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1996 Jul;62(7):2221–2227. doi: 10.1128/aem.62.7.2221-2227.1996

The two major spore DNA repair pathways, nucleotide excision repair and spore photoproduct lyase, are sufficient for the resistance of Bacillus subtilis spores to artificial UV-C and UV-B but not to solar radiation.

Y Xue 1, W L Nicholson 1
PMCID: PMC168002  PMID: 8779559

Abstract

Bacterial endospores are 1 to 2 orders of magnitude more resistant to 254-nm UV (UV-C) radiation than are exponentially growing cells of the same strain. This high UV resistance is due to two related phenomena: (i) DNA of dormant spores irradiated with 254-nm UV accumulates mainly a unique thymine dimer called the spore photoproduct (SP), and (ii) SP is corrected during spore germination by two major DNA repair pathways, nucleotide excision repair (NER) and an SP-specific enzyme called SP lyase. To date, it has been assumed that these two factors also account for resistance of bacterial spores to solar UV in the environment, despite the fact that sunlight at the Earth's surface consists of UV-B, UV-A, visible, and infrared wavelengths of approximately 290 nm and longer. To test this assumption, isogenic strains of Bacillus subtilis lacking either the NER or SP lyase DNA repair pathway were assayed for their relative resistance to radiation at a number of UV wavelengths, including UV-C (254 nm), UV-B (290 to 320 nm), full-spectrum sunlight, and sunlight from which the UV-B portion had been removed. For purposes of direct comparison, spore UV resistance levels were determined with respect to a calibrated biological dosimeter consisting of a mixture of wild-type spores and spores lacking both DNA repair systems. It was observed that the relative contributions of the two pathways to spore UV resistance change depending on the UV wavelengths used in a manner suggesting that spores irradiated with light at environmentally relevant UV wavelengths may accumulate significant amounts of one or more DNA photoproducts in addition to SP. Furthermore, it was noted that upon exposure to increasing wavelengths, wild-type spores decreased in their UV resistance from 33-fold (UV-C) to 12-fold (UV-B plus UV-A sunlight) to 6-fold (UV-A sunlight alone) more resistant than mutants lacking both DNA repair systems, suggesting that at increasing solar UV wavelengths, spores are inactivated either by DNA damage not reparable by the NER or SP lyase system, damage caused to photosensitive molecules other than DNA, or both.

Full Text

The Full Text of this article is available as a PDF (296.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Band L., Shimotsu H., Henner D. J. Nucleotide sequence of the Bacillus subtilis trpE and trpD genes. Gene. 1984 Jan;27(1):55–65. doi: 10.1016/0378-1119(84)90238-5. [DOI] [PubMed] [Google Scholar]
  2. Chen L., Helmann J. D. Bacillus subtilis MrgA is a Dps(PexB) homologue: evidence for metalloregulation of an oxidative-stress gene. Mol Microbiol. 1995 Oct;18(2):295–300. doi: 10.1111/j.1365-2958.1995.mmi_18020295.x. [DOI] [PubMed] [Google Scholar]
  3. Chen L., Keramati L., Helmann J. D. Coordinate regulation of Bacillus subtilis peroxide stress genes by hydrogen peroxide and metal ions. Proc Natl Acad Sci U S A. 1995 Aug 29;92(18):8190–8194. doi: 10.1073/pnas.92.18.8190. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Donnellan J. E., Jr, Setlow R. B. Thymine Photoproducts but not Thymine Dimers Found in Ultraviolet-Irradiated Bacterial Spores. Science. 1965 Jul 16;149(3681):308–310. doi: 10.1126/science.149.3681.308. [DOI] [PubMed] [Google Scholar]
  5. Fajardo-Cavazos P., Salazar C., Nicholson W. L. Molecular cloning and characterization of the Bacillus subtilis spore photoproduct lyase (spl) gene, which is involved in repair of UV radiation-induced DNA damage during spore germination. J Bacteriol. 1993 Mar;175(6):1735–1744. doi: 10.1128/jb.175.6.1735-1744.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kramer G. F., Ames B. N. Oxidative mechanisms of toxicity of low-intensity near-UV light in Salmonella typhimurium. J Bacteriol. 1987 May;169(5):2259–2266. doi: 10.1128/jb.169.5.2259-2266.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kramer G. F., Baker J. C., Ames B. N. Near-UV stress in Salmonella typhimurium: 4-thiouridine in tRNA, ppGpp, and ApppGpp as components of an adaptive response. J Bacteriol. 1988 May;170(5):2344–2351. doi: 10.1128/jb.170.5.2344-2351.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Lindberg C., Horneck G. Action spectra for survival and spore photoproduct formation of Bacillus subtilis irradiated with short-wavelength (200-300 nm) UV at atmospheric pressure and in vacuo. J Photochem Photobiol B. 1991 Oct;11(1):69–80. doi: 10.1016/1011-1344(91)80269-n. [DOI] [PubMed] [Google Scholar]
  9. Lindsay J. A., Murrell W. G. A comparison of UV induced DNA photoproducts from isolated and non-isolated developing bacterial forespores. Biochem Biophys Res Commun. 1983 Jun 15;113(2):618–625. doi: 10.1016/0006-291x(83)91771-0. [DOI] [PubMed] [Google Scholar]
  10. Munakata N. Biologically effective dose of solar ultraviolet radiation estimated by spore dosimetry in Tokyo since 1980. Photochem Photobiol. 1993 Sep;58(3):386–392. doi: 10.1111/j.1751-1097.1993.tb09579.x. [DOI] [PubMed] [Google Scholar]
  11. Munakata N. Genetic analysis of a mutant of Bacillus subtilis producingltraviolet-sensitive spores. Mol Gen Genet. 1969 Jul 3;104(3):258–263. doi: 10.1007/BF02539290. [DOI] [PubMed] [Google Scholar]
  12. Munakata N. Genotoxic action of sunlight upon Bacillus subtilis spores: monitoring studies at Tokyo, Japan. J Radiat Res. 1989 Dec;30(4):338–351. doi: 10.1269/jrr.30.338. [DOI] [PubMed] [Google Scholar]
  13. Munakata N., Hieda K., Kobayashi K., Ito A., Ito T. Action spectra in ultraviolet wavelengths (150-250 nm) for inactivation and mutagenesis of Bacillus subtilis spores obtained with synchrotron radiation. Photochem Photobiol. 1986 Sep;44(3):385–390. doi: 10.1111/j.1751-1097.1986.tb04680.x. [DOI] [PubMed] [Google Scholar]
  14. Munakata N. Killing and mutagenic action of sunlight upon Bacillus subtilis spores: a dosimetric system. Mutat Res. 1981 Jul;82(2):263–268. doi: 10.1016/0027-5107(81)90155-x. [DOI] [PubMed] [Google Scholar]
  15. Munakata N., Rupert C. S. Dark repair of DNA containing "spore photoproduct" in Bacillus subtilis. Mol Gen Genet. 1974 May 31;130(3):239–250. doi: 10.1007/BF00268802. [DOI] [PubMed] [Google Scholar]
  16. Munakata N., Rupert C. S. Genetically controlled removal of "spore photoproduct" from deoxyribonucleic acid of ultraviolet-irradiated Bacillus subtilis spores. J Bacteriol. 1972 Jul;111(1):192–198. doi: 10.1128/jb.111.1.192-198.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Quintern L. E., Puskeppeleit M., Rainer P., Weber S., el Naggar S., Eschweiler U., Horneck G. Continuous dosimetry of the biologically harmful UV-radiation in Antarctica with the biofilm technique. J Photochem Photobiol B. 1994 Jan;22(1):59–66. doi: 10.1016/1011-1344(93)06954-2. [DOI] [PubMed] [Google Scholar]
  18. Sammartano L. J., Tuveson R. W. Hydrogen peroxide induced resistance to broad-spectrum near-ultraviolet light (300-400 nm) inactivation in Escherichia coli. Photochem Photobiol. 1985 Mar;41(3):367–370. doi: 10.1111/j.1751-1097.1985.tb03499.x. [DOI] [PubMed] [Google Scholar]
  19. Schaeffer P., Millet J., Aubert J. P. Catabolic repression of bacterial sporulation. Proc Natl Acad Sci U S A. 1965 Sep;54(3):704–711. doi: 10.1073/pnas.54.3.704. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Setlow B., Setlow P. Decreased UV light resistance of spores of Bacillus subtilis strains deficient in pyrimidine dimer repair and small, acid-soluble spore proteins. Appl Environ Microbiol. 1988 May;54(5):1275–1276. doi: 10.1128/aem.54.5.1275-1276.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Setlow B., Setlow P. Thymine-containing dimers as well as spore photoproducts are found in ultraviolet-irradiated Bacillus subtilis spores that lack small acid-soluble proteins. Proc Natl Acad Sci U S A. 1987 Jan;84(2):421–423. doi: 10.1073/pnas.84.2.421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Setlow P. DNA in dormant spores of Bacillus species is in an A-like conformation. Mol Microbiol. 1992 Mar;6(5):563–567. doi: 10.1111/j.1365-2958.1992.tb01501.x. [DOI] [PubMed] [Google Scholar]
  23. Setlow P. I will survive: protecting and repairing spore DNA. J Bacteriol. 1992 May;174(9):2737–2741. doi: 10.1128/jb.174.9.2737-2741.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Setlow P. Small, acid-soluble spore proteins of Bacillus species: structure, synthesis, genetics, function, and degradation. Annu Rev Microbiol. 1988;42:319–338. doi: 10.1146/annurev.mi.42.100188.001535. [DOI] [PubMed] [Google Scholar]
  25. Setlow R. B., Carrier W. L. Pyrimidine dimers in ultraviolet-irradiated DNA's. J Mol Biol. 1966 May;17(1):237–254. doi: 10.1016/s0022-2836(66)80105-5. [DOI] [PubMed] [Google Scholar]
  26. Tyrrell R. M. A common pathway for protection of bacteria against damage by solar UVA (334 nm, 365 nm) and an oxidising agent (H2O2). Mutat Res. 1985 May;145(3):129–136. doi: 10.1016/0167-8817(85)90019-7. [DOI] [PubMed] [Google Scholar]
  27. Tyrrell R. M. Solar dosimetry with repair deficient bacterial spores: action spectra, photoproduct measurements and a comparison with other biological systems. Photochem Photobiol. 1978 May;27(5):571–579. doi: 10.1111/j.1751-1097.1978.tb07648.x. [DOI] [PubMed] [Google Scholar]
  28. Varghese A. J. 5-Thyminyl-5,6-dihydrothymine from DNA irradiated with ultraviolet light. Biochem Biophys Res Commun. 1970 Feb 6;38(3):484–490. doi: 10.1016/0006-291x(70)90739-4. [DOI] [PubMed] [Google Scholar]
  29. Wang T. C. A simple convenient biological dosimeter for monitoring solar UV-B radiation. Biochem Biophys Res Commun. 1991 May 31;177(1):48–53. doi: 10.1016/0006-291x(91)91946-a. [DOI] [PubMed] [Google Scholar]
  30. Yanisch-Perron C., Vieira J., Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. doi: 10.1016/0378-1119(85)90120-9. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES