Abstract
A plasmid containing a transcriptional fusion of the Escherichia coli katG promoter to a truncated Vibrio fischeri lux operon (luxCDABE) was constructed. An E. coli strain bearing this plasmid (strain DPD2511) exhibited low basal levels of luminescence, which increased up to 1,000-fold in the presence of hydrogen peroxide, organic peroxides, redox-cycling agents (methyl viologen and menadione), a hydrogen peroxide-producing enzyme system (xanthine and xanthine oxidase), and cigarette smoke. An oxyR deletion abolished hydrogen peroxide-dependent induction, confirming that oxyR controlled katG'::lux luminescence. Light emission was also induced by ethanol by an unexplained mechanism. A marked synergistic response was observed when cells were exposed to both ethanol and hydrogen peroxide; the level of luminescence measured in the presence of both inducers was much higher than the sum of the level of luminescence observed with ethanol and the level of luminescence observed with hydrogen peroxide. It is suggested that this construction or similar constructions may be used as a tool for assaying oxidant and antioxidant properties of chemicals, as a biosensor for environmental monitoring and as a tool for studying cellular responses to oxidative hazards.
Full Text
The Full Text of this article is available as a PDF (285.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Altuvia S., Almirón M., Huisman G., Kolter R., Storz G. The dps promoter is activated by OxyR during growth and by IHF and sigma S in stationary phase. Mol Microbiol. 1994 Jul;13(2):265–272. doi: 10.1111/j.1365-2958.1994.tb00421.x. [DOI] [PubMed] [Google Scholar]
- Bouffard G., Ostell J., Rudd K. E. GeneScape: a relational database of Escherichia coli genomic map data for Macintosh computers. Comput Appl Biosci. 1992 Dec;8(6):563–567. doi: 10.1093/bioinformatics/8.6.563. [DOI] [PubMed] [Google Scholar]
- Crawford D. R., Edbauer-Nechamen C. A., Lowry C. V., Salmon S. L., Kim Y. K., Davies J. M., Davies K. J. Assessing gene expression during oxidative stress. Methods Enzymol. 1994;234:175–217. doi: 10.1016/0076-6879(94)34087-0. [DOI] [PubMed] [Google Scholar]
- Davies K. J., Lin S. W. Degradation of oxidatively denatured proteins in Escherichia coli. Free Radic Biol Med. 1988;5(4):215–223. doi: 10.1016/0891-5849(88)90015-9. [DOI] [PubMed] [Google Scholar]
- Demple B. Regulation of bacterial oxidative stress genes. Annu Rev Genet. 1991;25:315–337. doi: 10.1146/annurev.ge.25.120191.001531. [DOI] [PubMed] [Google Scholar]
- Greenberg J. T., Chou J. H., Monach P. A., Demple B. Activation of oxidative stress genes by mutations at the soxQ/cfxB/marA locus of Escherichia coli. J Bacteriol. 1991 Jul;173(14):4433–4439. doi: 10.1128/jb.173.14.4433-4439.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kohara Y., Akiyama K., Isono K. The physical map of the whole E. coli chromosome: application of a new strategy for rapid analysis and sorting of a large genomic library. Cell. 1987 Jul 31;50(3):495–508. doi: 10.1016/0092-8674(87)90503-4. [DOI] [PubMed] [Google Scholar]
- Meighen E. A., Dunlap P. V. Physiological, biochemical and genetic control of bacterial bioluminescence. Adv Microb Physiol. 1993;34:1–67. doi: 10.1016/s0065-2911(08)60027-2. [DOI] [PubMed] [Google Scholar]
- Menzel R. A microtiter plate-based system for the semiautomated growth and assay of bacterial cells for beta-galactosidase activity. Anal Biochem. 1989 Aug 15;181(1):40–50. doi: 10.1016/0003-2697(89)90391-6. [DOI] [PubMed] [Google Scholar]
- Rogowsky P. M., Close T. J., Chimera J. A., Shaw J. J., Kado C. I. Regulation of the vir genes of Agrobacterium tumefaciens plasmid pTiC58. J Bacteriol. 1987 Nov;169(11):5101–5112. doi: 10.1128/jb.169.11.5101-5112.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stewart G. S., Williams P. lux genes and the applications of bacterial bioluminescence. J Gen Microbiol. 1992 Jul;138(7):1289–1300. doi: 10.1099/00221287-138-7-1289. [DOI] [PubMed] [Google Scholar]
- Storz G., Altuvia S. OxyR regulon. Methods Enzymol. 1994;234:217–223. doi: 10.1016/0076-6879(94)34088-9. [DOI] [PubMed] [Google Scholar]
- Storz G., Tartaglia L. A., Farr S. B., Ames B. N. Bacterial defenses against oxidative stress. Trends Genet. 1990 Nov;6(11):363–368. doi: 10.1016/0168-9525(90)90278-e. [DOI] [PubMed] [Google Scholar]
- Triggs-Raine B. L., Doble B. W., Mulvey M. R., Sorby P. A., Loewen P. C. Nucleotide sequence of katG, encoding catalase HPI of Escherichia coli. J Bacteriol. 1988 Sep;170(9):4415–4419. doi: 10.1128/jb.170.9.4415-4419.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Van Dyk T. K., Majarian W. R., Konstantinov K. B., Young R. M., Dhurjati P. S., LaRossa R. A. Rapid and sensitive pollutant detection by induction of heat shock gene-bioluminescence gene fusions. Appl Environ Microbiol. 1994 May;60(5):1414–1420. doi: 10.1128/aem.60.5.1414-1420.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Van Dyk T. K., Reed T. R., Vollmer A. C., LaRossa R. A. Synergistic induction of the heat shock response in Escherichia coli by simultaneous treatment with chemical inducers. J Bacteriol. 1995 Oct;177(20):6001–6004. doi: 10.1128/jb.177.20.6001-6004.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Van Dyk T. K., Smulski D. R., Reed T. R., Belkin S., Vollmer A. C., LaRossa R. A. Responses to toxicants of an Escherichia coli strain carrying a uspA'::lux genetic fusion and an E. coli strain carrying a grpE'::lux fusion are similar. Appl Environ Microbiol. 1995 Nov;61(11):4124–4127. doi: 10.1128/aem.61.11.4124-4127.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]