Abstract
Serological reactions of Pseudomonas syringae and Pseudomonas viridiflava were studied by Ouchterlony double diffusion. A total of 55 polyclonal antisera, containing anti-lipopolysaccharide (anti-LPS) precipitating antibodies, were cross-tested against antigenic suspensions of 51 strains. Twenty-three O serogroups were defined, primarily on the reaction of the type strains. Two families of O serogroups showed antigenic crossreactivities (PHA, MOP1, MOP2, MOP3, HEL1, HEL2, and SYR1; PERSAVTOM1, PERSAVTOM2, DEL, POR, and SYR2). Ten O serogroups showed a clearcut specificity: APTPIS, TAB, VIR1, VIR2, VIR3, SYR3, SYR4, SYR5, HUS, and LAC. The last serogroup (RIB) contained strains with rough colony morphology and side chain-deficient LPSs, as evidenced by sodium dodecyl sulfate-polycrylamide gel electrophoresis. The LPS basis of the O serogroups was demonstrated by immunoblotting. Serological reference strains were designated for all of the O serogroups and correspondence was established between the O serogroups studied and seven previous serogroups (L. T. Pastushenko and I.D. Simonovich, Mikrobiol, Zh. 41:222-229 and 330-339, 1979). A total of 355 strains of P. syringae (sensu lato) belonging to 15 pathovars, not including pathovar syringae, were typed into the 23 described O serogroups. O serogroups were assigned after double-diffusion reactions, with each strain compared with serological references. The utility of O serogrouping to study P. syringae pathovar structure and diversity is discussed.
Full Text
The Full Text of this article is available as a PDF (367.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Coleno A. Intérêt des motifs antigéniques communs entre Pseudomonas phaseolicola (Burk) Dowson et Pseudomonas syringae Van Hall pour le typage de cette dernière espéce. C R Acad Sci Hebd Seances Acad Sci D. 1968 Jun 24;266(26):2516–2518. [PubMed] [Google Scholar]
- Goldman R. C., Leive L. Heterogeneity of antigenic-side-chain length in lipopolysaccharide from Escherichia coli 0111 and Salmonella typhimurium LT2. Eur J Biochem. 1980;107(1):145–153. doi: 10.1111/j.1432-1033.1980.tb04635.x. [DOI] [PubMed] [Google Scholar]
- Hitchcock P. J., Brown T. M. Morphological heterogeneity among Salmonella lipopolysaccharide chemotypes in silver-stained polyacrylamide gels. J Bacteriol. 1983 Apr;154(1):269–277. doi: 10.1128/jb.154.1.269-277.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KING E. O., WARD M. K., RANEY D. E. Two simple media for the demonstration of pyocyanin and fluorescin. J Lab Clin Med. 1954 Aug;44(2):301–307. [PubMed] [Google Scholar]
- Knirel' Iu A., Zdorovenko G. M., Shashkov A. S., Mamian S. S., Iakovleva L. M. Antigennye polisakharidy bakterii. 26. Stroenie O-spetsificheskikh polisakharidov Pseudomonas cerasi 467 i Pseudomonas syringae, patovar syringae, shtammy 218 i P-55, otnosiashchikhsia k serogruppam II i III. Bioorg Khim. 1988 Jan;14(1):82–91. [PubMed] [Google Scholar]
- LOVREKOVICH L., KLEMENT Z. Species-specific antigens of Pseudomonas tabaci. Acta Microbiol Acad Sci Hung. 1961;8:303–310. [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lelliott R. A., Billing E., Hayward A. C. A determinative scheme for the fluorescent plant pathogenic pseudomonads. J Appl Bacteriol. 1966 Dec;29(3):470–489. doi: 10.1111/j.1365-2672.1966.tb03499.x. [DOI] [PubMed] [Google Scholar]
- Lucas L. T., Grogan R. G. Serological variation and identification of Pseudomonas lachrymans and other phytopathogenic Pseudomonas nomenspecies. Phytopathology. 1969 Dec;59(12):1908–1912. [PubMed] [Google Scholar]
- OUCHTERLONY O. Diffusion-in-gel methods for immunological analysis. Prog Allergy. 1958;5:1–78. [PubMed] [Google Scholar]
- Pastushenko L. T., Simonovich I. D. Serologicheskie gruppy fitopatogennykh bakterii roda Pseudomonas. I. Antigennoe rodstvo vnutri vidov. Mikrobiol Zh. 1979 May-Jun;41(3):222–228. [PubMed] [Google Scholar]
- Pastushenko L. T., Simonovich I. D. Serologicheskie gruppy fitopatogennykh bakterii roda Pseudomonas. II. Antigennoe rodstvo razlichnykh vidov. Mikrobiol Zh. 1979 Jul-Aug;41(4):330–339. [PubMed] [Google Scholar]
- Smith A. R., Munro S. M., Wait R., Hignett R. C. Effect on lipopolysaccharide structure of aeration during growth of a plum isolate of Pseudomonas syringae pv. morsprunorum. Microbiology. 1994 Jul;140(Pt 7):1585–1593. doi: 10.1099/13500872-140-7-1585. [DOI] [PubMed] [Google Scholar]
- Taylor J. D. Bacteriophage and serological methods for the identification of Pseudomonas phaseolicola (Burkh.) Dowson. Ann Appl Biol. 1970 Dec;66(3):387–395. doi: 10.1111/j.1744-7348.1970.tb04618.x. [DOI] [PubMed] [Google Scholar]
- Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tsai C. M., Frasch C. E. A sensitive silver stain for detecting lipopolysaccharides in polyacrylamide gels. Anal Biochem. 1982 Jan 1;119(1):115–119. doi: 10.1016/0003-2697(82)90673-x. [DOI] [PubMed] [Google Scholar]
