Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1996 Jul;62(7):2360–2374. doi: 10.1128/aem.62.7.2360-2374.1996

Distribution of Pseudomonas syringae pathovars into twenty-three O serogroups.

M Saunier 1, L Malandrin 1, R Samson 1
PMCID: PMC168017  PMID: 8779574

Abstract

Serological reactions of Pseudomonas syringae and Pseudomonas viridiflava were studied by Ouchterlony double diffusion. A total of 55 polyclonal antisera, containing anti-lipopolysaccharide (anti-LPS) precipitating antibodies, were cross-tested against antigenic suspensions of 51 strains. Twenty-three O serogroups were defined, primarily on the reaction of the type strains. Two families of O serogroups showed antigenic crossreactivities (PHA, MOP1, MOP2, MOP3, HEL1, HEL2, and SYR1; PERSAVTOM1, PERSAVTOM2, DEL, POR, and SYR2). Ten O serogroups showed a clearcut specificity: APTPIS, TAB, VIR1, VIR2, VIR3, SYR3, SYR4, SYR5, HUS, and LAC. The last serogroup (RIB) contained strains with rough colony morphology and side chain-deficient LPSs, as evidenced by sodium dodecyl sulfate-polycrylamide gel electrophoresis. The LPS basis of the O serogroups was demonstrated by immunoblotting. Serological reference strains were designated for all of the O serogroups and correspondence was established between the O serogroups studied and seven previous serogroups (L. T. Pastushenko and I.D. Simonovich, Mikrobiol, Zh. 41:222-229 and 330-339, 1979). A total of 355 strains of P. syringae (sensu lato) belonging to 15 pathovars, not including pathovar syringae, were typed into the 23 described O serogroups. O serogroups were assigned after double-diffusion reactions, with each strain compared with serological references. The utility of O serogrouping to study P. syringae pathovar structure and diversity is discussed.

Full Text

The Full Text of this article is available as a PDF (367.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Coleno A. Intérêt des motifs antigéniques communs entre Pseudomonas phaseolicola (Burk) Dowson et Pseudomonas syringae Van Hall pour le typage de cette dernière espéce. C R Acad Sci Hebd Seances Acad Sci D. 1968 Jun 24;266(26):2516–2518. [PubMed] [Google Scholar]
  2. Goldman R. C., Leive L. Heterogeneity of antigenic-side-chain length in lipopolysaccharide from Escherichia coli 0111 and Salmonella typhimurium LT2. Eur J Biochem. 1980;107(1):145–153. doi: 10.1111/j.1432-1033.1980.tb04635.x. [DOI] [PubMed] [Google Scholar]
  3. Hitchcock P. J., Brown T. M. Morphological heterogeneity among Salmonella lipopolysaccharide chemotypes in silver-stained polyacrylamide gels. J Bacteriol. 1983 Apr;154(1):269–277. doi: 10.1128/jb.154.1.269-277.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. KING E. O., WARD M. K., RANEY D. E. Two simple media for the demonstration of pyocyanin and fluorescin. J Lab Clin Med. 1954 Aug;44(2):301–307. [PubMed] [Google Scholar]
  5. Knirel' Iu A., Zdorovenko G. M., Shashkov A. S., Mamian S. S., Iakovleva L. M. Antigennye polisakharidy bakterii. 26. Stroenie O-spetsificheskikh polisakharidov Pseudomonas cerasi 467 i Pseudomonas syringae, patovar syringae, shtammy 218 i P-55, otnosiashchikhsia k serogruppam II i III. Bioorg Khim. 1988 Jan;14(1):82–91. [PubMed] [Google Scholar]
  6. LOVREKOVICH L., KLEMENT Z. Species-specific antigens of Pseudomonas tabaci. Acta Microbiol Acad Sci Hung. 1961;8:303–310. [PubMed] [Google Scholar]
  7. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  8. Lelliott R. A., Billing E., Hayward A. C. A determinative scheme for the fluorescent plant pathogenic pseudomonads. J Appl Bacteriol. 1966 Dec;29(3):470–489. doi: 10.1111/j.1365-2672.1966.tb03499.x. [DOI] [PubMed] [Google Scholar]
  9. Lucas L. T., Grogan R. G. Serological variation and identification of Pseudomonas lachrymans and other phytopathogenic Pseudomonas nomenspecies. Phytopathology. 1969 Dec;59(12):1908–1912. [PubMed] [Google Scholar]
  10. OUCHTERLONY O. Diffusion-in-gel methods for immunological analysis. Prog Allergy. 1958;5:1–78. [PubMed] [Google Scholar]
  11. Pastushenko L. T., Simonovich I. D. Serologicheskie gruppy fitopatogennykh bakterii roda Pseudomonas. I. Antigennoe rodstvo vnutri vidov. Mikrobiol Zh. 1979 May-Jun;41(3):222–228. [PubMed] [Google Scholar]
  12. Pastushenko L. T., Simonovich I. D. Serologicheskie gruppy fitopatogennykh bakterii roda Pseudomonas. II. Antigennoe rodstvo razlichnykh vidov. Mikrobiol Zh. 1979 Jul-Aug;41(4):330–339. [PubMed] [Google Scholar]
  13. Smith A. R., Munro S. M., Wait R., Hignett R. C. Effect on lipopolysaccharide structure of aeration during growth of a plum isolate of Pseudomonas syringae pv. morsprunorum. Microbiology. 1994 Jul;140(Pt 7):1585–1593. doi: 10.1099/13500872-140-7-1585. [DOI] [PubMed] [Google Scholar]
  14. Taylor J. D. Bacteriophage and serological methods for the identification of Pseudomonas phaseolicola (Burkh.) Dowson. Ann Appl Biol. 1970 Dec;66(3):387–395. doi: 10.1111/j.1744-7348.1970.tb04618.x. [DOI] [PubMed] [Google Scholar]
  15. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Tsai C. M., Frasch C. E. A sensitive silver stain for detecting lipopolysaccharides in polyacrylamide gels. Anal Biochem. 1982 Jan 1;119(1):115–119. doi: 10.1016/0003-2697(82)90673-x. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES