Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1996 Jul;62(7):2482–2488. doi: 10.1128/aem.62.7.2482-2488.1996

Purification and characterization of a fibrinolytic enzyme produced from Bacillus sp. strain CK 11-4 screened from Chungkook-Jang.

W Kim 1, K Choi 1, Y Kim 1, H Park 1, J Choi 1, Y Lee 1, H Oh 1, I Kwon 1, S Lee 1
PMCID: PMC168030  PMID: 8779587

Abstract

Bacillus sp. strain CK 11-4, which produces a strongly fibrinolytic enzyme, was screened from Chungkook-Jang, a traditional Korean fermented-soybean sauce. The fibrinolytic enzyme (CK) was purified from supernatant of Bacillus sp. strain CK 11-4 culture broth and showed thermophilic, hydrophilic, and strong fibrinolytic activity. The optimum temperature and pH were 70 degrees C and 10.5, respectively, and the molecular weight was 28,200 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The first 14 amino acids of the N-terminal sequence of CK are Ala-Gin-Thr-Val-Pro-Tyr-Gly-Ile-Pro-Leu-Ile-Lys-Ala-Asp. This sequence is identical to that of subtilisin Carlsberg and different from that of nattokinase, but CK showed a level of fibrinolytic activity that was about eight times higher than that of subtilisin Carlsberg. The amidolytic activity of CK increased about twofold at the initial state of the reaction when CK enzyme was added to a mixture of plasminogen and substrate (H-D-Val-Leu-Lys-pNA). A similar result was also obtained from fibrin plate analysis.

Full Text

The Full Text of this article is available as a PDF (475.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ASTRUP T., MULLERTZ S. The fibrin plate method for estimating fibrinolytic activity. Arch Biochem Biophys. 1952 Oct;40(2):346–351. doi: 10.1016/0003-9861(52)90121-5. [DOI] [PubMed] [Google Scholar]
  2. Fayek K. I., El-Sayed S. T. Fibrinolytic activity of an enzyme produced by Bacillus subtilis. Z Ernahrungswiss. 1980 Mar;19(1):21–23. doi: 10.1007/BF02021067. [DOI] [PubMed] [Google Scholar]
  3. Jacobs M., Eliasson M., Uhlén M., Flock J. I. Cloning, sequencing and expression of subtilisin Carlsberg from Bacillus licheniformis. Nucleic Acids Res. 1985 Dec 20;13(24):8913–8926. doi: 10.1093/nar/13.24.8913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Kame M., Koda H., Kato A., Koma T. Detergency and mechanism of soil removal in detergent-enzyme system. J Am Oil Chem Soc. 1973 Nov;50(11):464–469. doi: 10.1007/BF02639856. [DOI] [PubMed] [Google Scholar]
  5. Katayama K., Fujita T. Studies on biotransformation of elastase. II. Intestinal absorption of 131 I-labelled elastase in vivo. Biochim Biophys Acta. 1972 Oct 23;288(1):181–189. doi: 10.1016/0005-2736(72)90236-2. [DOI] [PubMed] [Google Scholar]
  6. Kitaguchi H., Hijikata A., Hirata M. Effect of thrombin on plasminogen activator release from isolated perfused dog leg. Thromb Res. 1979;16(3-4):407–420. doi: 10.1016/0049-3848(79)90088-4. [DOI] [PubMed] [Google Scholar]
  7. Kleiner D. E., Stetler-Stevenson W. G. Quantitative zymography: detection of picogram quantities of gelatinases. Anal Biochem. 1994 May 1;218(2):325–329. doi: 10.1006/abio.1994.1186. [DOI] [PubMed] [Google Scholar]
  8. Klöcking H. P., Jablonowski C., Markwardt F. Studies on the release of plasminogen activator from the isolated rat lung by serine proteinases. 1981 Aug 15-Sep 1Thromb Res. 23(4-5):375–379. doi: 10.1016/0049-3848(81)90198-5. [DOI] [PubMed] [Google Scholar]
  9. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  10. Matsudaira P. Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes. J Biol Chem. 1987 Jul 25;262(21):10035–10038. [PubMed] [Google Scholar]
  11. Mäntsälä P., Zalkin H. Extracellular and membrane-bound proteases from Bacillus subtilis. J Bacteriol. 1980 Feb;141(2):493–501. doi: 10.1128/jb.141.2.493-501.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Nakamura T., Yamagata Y., Ichishima E. Nucleotide sequence of the subtilisin NAT gene, aprN, of Bacillus subtilis (natto). Biosci Biotechnol Biochem. 1992 Nov;56(11):1869–1871. doi: 10.1271/bbb.56.1869. [DOI] [PubMed] [Google Scholar]
  13. Papp M., Fehér S., Folly G., Horváth E. J. Absorption of pancreatic lipase from the duodenum into lymphatics. Experientia. 1977 Sep 15;33(9):1191–1192. doi: 10.1007/BF01922321. [DOI] [PubMed] [Google Scholar]
  14. Prestidge L., Gage V., Spizizen J. Protease activities during the course of sporulation on Bacillus subtilis. J Bacteriol. 1971 Sep;107(3):815–823. doi: 10.1128/jb.107.3.815-823.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Price C. W., Gitt M. A., Doi R. H. Isolation and physical mapping of the gene encoding the major sigma factor of Bacillus subtilis RNA polymerase. Proc Natl Acad Sci U S A. 1983 Jul;80(13):4074–4078. doi: 10.1073/pnas.80.13.4074. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Sasaki K., Moriyama S., Tanaka Y., Sumi H., Toki N., Robbins K. C. The transport of 125I-labeled human high molecular weight urokinase across the intestinal tract in a dog model with stimulation of synthesis and/or release of plasminogen activators. Blood. 1985 Jul;66(1):69–75. [PubMed] [Google Scholar]
  17. Sherry S. Recombinant tissue plasminogen activator (rt-PA): is it the thrombolytic agent of choice for an evolving acute myocardial infarction? Am J Cardiol. 1987 Apr 15;59(9):984–989. doi: 10.1016/0002-9149(87)91139-8. [DOI] [PubMed] [Google Scholar]
  18. Smith E. L., DeLange R. J., Evans W. H., Landon M., Markland F. S. Subtilisin Carlsberg. V. The complete sequence; comparison with subtilisin BPN'; evolutionary relationships. J Biol Chem. 1968 May 10;243(9):2184–2191. [PubMed] [Google Scholar]
  19. Srivastava O. P., Aronson A. I. Isolation and characterization of a unique protease from sporulating cells of Bacillus subtilis. Arch Microbiol. 1981 May;129(3):227–232. doi: 10.1007/BF00425256. [DOI] [PubMed] [Google Scholar]
  20. Strongin A. Y., Izotova L. S., Abramov Z. T., Gorodetsky D. I., Ermakova L. M., Baratova L. A., Belyanova L. P., Stepanov V. M. Intracellular serine protease of Bacillus subtilis: sequence homology with extracellular subtilisins. J Bacteriol. 1978 Mar;133(3):1401–1411. doi: 10.1128/jb.133.3.1401-1411.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Sumi H., Hamada H., Nakanishi K., Hiratani H. Enhancement of the fibrinolytic activity in plasma by oral administration of nattokinase. Acta Haematol. 1990;84(3):139–143. doi: 10.1159/000205051. [DOI] [PubMed] [Google Scholar]
  22. Sumi H., Hamada H., Tsushima H., Mihara H., Muraki H. A novel fibrinolytic enzyme (nattokinase) in the vegetable cheese Natto; a typical and popular soybean food in the Japanese diet. Experientia. 1987 Oct 15;43(10):1110–1111. doi: 10.1007/BF01956052. [DOI] [PubMed] [Google Scholar]
  23. Sumi H., Maruyama M., Yoneta T., Mihara H. Activation of plasma fibrinolysis after intrarectal administration of high molecular weight urokinase and its derivative. Acta Haematol. 1983;70(5):289–295. doi: 10.1159/000206755. [DOI] [PubMed] [Google Scholar]
  24. Sumi H., Sasaki K., Toki N., Robbins K. C. Oral administration of urokinase. Thromb Res. 1980 Dec 1;20(5-6):711–714. doi: 10.1016/0049-3848(80)90161-9. [DOI] [PubMed] [Google Scholar]
  25. Takagi H., Takahashi T., Momose H., Inouye M., Maeda Y., Matsuzawa H., Ohta T. Enhancement of the thermostability of subtilisin E by introduction of a disulfide bond engineered on the basis of structural comparison with a thermophilic serine protease. J Biol Chem. 1990 Apr 25;265(12):6874–6878. [PubMed] [Google Scholar]
  26. Toki N., Sumi H., Sasaki K., Boreisha I., Robbins K. C. Transport of urokinase across the intestinal tract of normal human subjects with stimulation of synthesis and/or release of urokinase-type proteins. J Clin Invest. 1985 Apr;75(4):1212–1222. doi: 10.1172/JCI111818. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Tomoda S. Enzyme immunoassay for hCG-beta-subunit. Osaka City Med J. 1980;26(2):111–116. [PubMed] [Google Scholar]
  28. Vasantha N., Thompson L. D., Rhodes C., Banner C., Nagle J., Filpula D. Genes for alkaline protease and neutral protease from Bacillus amyloliquefaciens contain a large open reading frame between the regions coding for signal sequence and mature protein. J Bacteriol. 1984 Sep;159(3):811–819. doi: 10.1128/jb.159.3.811-819.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Warshaw A. L., Walker W. A., Isselbacher K. J. Protein uptake by the intestine: evidence for absorption of intact macromolecules. Gastroenterology. 1974 May;66(5):987–992. [PubMed] [Google Scholar]
  30. Yoshimoto T., Oyama H., Honda T., Tone H., Takeshita T., Kamiyama T., Tsuru D. Cloning and expression of subtilisin amylosacchariticus gene. J Biochem. 1988 Jun;103(6):1060–1065. doi: 10.1093/oxfordjournals.jbchem.a122380. [DOI] [PubMed] [Google Scholar]
  31. de Boer A. S., Diderichsen B. On the safety of Bacillus subtilis and B. amyloliquefaciens: a review. Appl Microbiol Biotechnol. 1991 Oct;36(1):1–4. doi: 10.1007/BF00164689. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES