Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1996 Jul;62(7):2508–2512. doi: 10.1128/aem.62.7.2508-2512.1996

A simple filtration method to remove plankton-associated Vibrio cholerae in raw water supplies in developing countries.

A Huo 1, B Xu 1, M A Chowdhury 1, M S Islam 1, R Montilla 1, R R Colwell 1
PMCID: PMC168033  PMID: 8779590

Abstract

Plankton to which cells of Vibrio cholerae O1 and/or O139 were attached was introduced into 0.5% Instant Ocean microcosms maintained at 25 degrees C. The bulk of the plankton and associated particulates was removed with a filter constructed from either nylon net and one of several different types of sari material, the latter being very inexpensive and readily available in villages in Bangladesh, where V. cholerae is endemic. V. cholerae was enumerated before and after filtration to evaluate the efficiency of the filtration procedure. The results obtained indicate that 99% of V. cholerae, i.e., those cells attached to plankton, were removed from the water samples. Epidemic strains of V. cholerae O1 and O139 from various geographical sources, including Bangladesh, Brazil, India, and Mexico, were included in the experiments. Removal of vibrios from water by this simple filtration method was found to yield consistent results with all strains examined in this study. Thus, it is concluded that a simple filtration procedure involving the use of domestic sari material can reduce the number of cholera vibrios attached to plankton in raw water from ponds and rivers commonly used for drinking. Since untreated water from such sources serves as drinking water for millions of people living in developing countries (e.g., Bangladesh), filtration should prove effective at reducing the incidence and severity of outbreaks, especially in places that lack fuel wood for boiling water and/or municipal water treatment plants. The results of this study provide the basis for determining such reductions, which are to be carried out in the near future.

Full Text

The Full Text of this article is available as a PDF (236.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cash R. A., Music S. I., Libonati J. P., Snyder M. J., Wenzel R. P., Hornick R. B. Response of man to infection with Vibrio cholerae. I. Clinical, serologic, and bacteriologic responses to a known inoculum. J Infect Dis. 1974 Jan;129(1):45–52. doi: 10.1093/infdis/129.1.45. [DOI] [PubMed] [Google Scholar]
  2. Chowdhury M. A., Miyoshi S., Yamanaka H., Shinoda S. Ecology and distribution of toxigenic Vibrio cholerae in aquatic environments of a temperate region. Microbios. 1992;72(292-293):203–213. [PubMed] [Google Scholar]
  3. Colwell R. R., Huq A. Environmental reservoir of Vibrio cholerae. The causative agent of cholera. Ann N Y Acad Sci. 1994 Dec 15;740:44–54. doi: 10.1111/j.1749-6632.1994.tb19852.x. [DOI] [PubMed] [Google Scholar]
  4. Colwell R. R., Kaper J., Joseph S. W. Vibrio cholerae, Vibrio parahaemolyticus, and other vibrios: occurrence and distribution in Chesapeake Bay. Science. 1977 Oct 28;198(4315):394–396. [PubMed] [Google Scholar]
  5. Colwell R. R., Seidler R. J., Kaper J., Joseph S. W., Garges S., Lockman H., Maneval D., Bradford H., Roberts N., Remmers E. Occurrence of Vibrio cholerae serotype O1 in Maryland and Louisiana estuaries. Appl Environ Microbiol. 1981 Feb;41(2):555–558. doi: 10.1128/aem.41.2.555-558.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hughes J. M., Boyce J. M., Levine R. J., Khan M., Aziz K. M., Huq M. I., Curlin G. T. Epidemiology of eltor cholera in rural Bangladesh: importance of surface water in transmission. Bull World Health Organ. 1982;60(3):395–404. [PMC free article] [PubMed] [Google Scholar]
  7. Huq A., Colwell R. R., Chowdhury M. A., Xu B., Moniruzzaman S. M., Islam M. S., Yunus M., Albert M. J. Coexistence of Vibrio cholerae O1 and O139 Bengal in plankton in Bangladesh. Lancet. 1995 May 13;345(8959):1249–1249. doi: 10.1016/s0140-6736(95)92038-2. [DOI] [PubMed] [Google Scholar]
  8. Huq A., Colwell R. R., Rahman R., Ali A., Chowdhury M. A., Parveen S., Sack D. A., Russek-Cohen E. Detection of Vibrio cholerae O1 in the aquatic environment by fluorescent-monoclonal antibody and culture methods. Appl Environ Microbiol. 1990 Aug;56(8):2370–2373. doi: 10.1128/aem.56.8.2370-2373.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Huq A., Small E. B., West P. A., Huq M. I., Rahman R., Colwell R. R. Ecological relationships between Vibrio cholerae and planktonic crustacean copepods. Appl Environ Microbiol. 1983 Jan;45(1):275–283. doi: 10.1128/aem.45.1.275-283.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Huq A., West P. A., Small E. B., Huq M. I., Colwell R. R. Influence of water temperature, salinity, and pH on survival and growth of toxigenic Vibrio cholerae serovar 01 associated with live copepods in laboratory microcosms. Appl Environ Microbiol. 1984 Aug;48(2):420–424. doi: 10.1128/aem.48.2.420-424.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Islam M. S., Drasar B. S., Bradley D. J. Attachment of toxigenic Vibrio cholerae 01 to various freshwater plants and survival with a filamentous green alga, Rhizoclonium fontanum. J Trop Med Hyg. 1989 Dec;92(6):396–401. [PubMed] [Google Scholar]
  12. McCarthy S. A., Khambaty F. M. International dissemination of epidemic Vibrio cholerae by cargo ship ballast and other nonpotable waters. Appl Environ Microbiol. 1994 Jul;60(7):2597–2601. doi: 10.1128/aem.60.7.2597-2601.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Roszak D. B., Colwell R. R. Survival strategies of bacteria in the natural environment. Microbiol Rev. 1987 Sep;51(3):365–379. doi: 10.1128/mr.51.3.365-379.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Siddique A. K., Salam A., Islam M. S., Akram K., Majumdar R. N., Zaman K., Fronczak N., Laston S. Why treatment centres failed to prevent cholera deaths among Rwandan refugees in Goma, Zaire. Lancet. 1995 Feb 11;345(8946):359–361. doi: 10.1016/s0140-6736(95)90344-5. [DOI] [PubMed] [Google Scholar]
  15. Siddique A. K., Zaman K., Baqui A. H., Akram K., Mutsuddy P., Eusof A., Haider K., Islam S., Sack R. B. Cholera epidemics in Bangladesh: 1985-1991. J Diarrhoeal Dis Res. 1992 Jun;10(2):79–86. [PubMed] [Google Scholar]
  16. Sochard M. R., Wilson D. F., Austin B., Colwell R. R. Bacteria associated with the surface and gut of marine copepods. Appl Environ Microbiol. 1979 Apr;37(4):750–759. doi: 10.1128/aem.37.4.750-759.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Tamplin M. L., Gauzens A. L., Huq A., Sack D. A., Colwell R. R. Attachment of Vibrio cholerae serogroup O1 to zooplankton and phytoplankton of Bangladesh waters. Appl Environ Microbiol. 1990 Jun;56(6):1977–1980. doi: 10.1128/aem.56.6.1977-1980.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES