Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1996 Jul;62(7):2540–2546. doi: 10.1128/aem.62.7.2540-2546.1996

Production of a polyhydroxyalkanoate biopolymer in insect cells with a modified eucaryotic fatty acid synthase.

M D Williams 1, J A Rahn 1, D H Sherman 1
PMCID: PMC168036  PMID: 8779593

Abstract

A novel pathway for the synthesis of poly-3-hydroxybutyrate has been engineered by simultaneous delivery of two genes into insect cells (Spodoptera frugiperda) by use of individual baculovirus vectors. This system includes expression of a dehydrase-domain mutant rat fatty acid synthase cDNA and the phbC gene encoding polyhydroxyalkanoate synthase from Alcaligenes eutrophus. The dehydrase-deficient fatty acid synthase provides de novo synthesis of R-(-)-3-hydroxybutyryl-coenzyme A as a premature termination product rather than palmityl-coenzyme A, the normal product of wild-type rat fatty acid synthase. High levels of this mutant multifunctional protein provide a suitable precursor pool of R-(-)-3-hydroxybutyryl-coenzyme A for conversion to poly-3-hydroxybutyrate in insect cells coexpressing the phbC gene product. This strategy for redesigning a poly-3-hydroxybutyrate biosynthetic pathway suggests a new method for generating structurally diverse polyhydroxyalkanoates by metabolic engineering.

Full Text

The Full Text of this article is available as a PDF (451.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amy C. M., Witkowski A., Naggert J., Williams B., Randhawa Z., Smith S. Molecular cloning and sequencing of cDNAs encoding the entire rat fatty acid synthase. Proc Natl Acad Sci U S A. 1989 May;86(9):3114–3118. doi: 10.1073/pnas.86.9.3114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Anderson A. J., Dawes E. A. Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol Rev. 1990 Dec;54(4):450–472. doi: 10.1128/mr.54.4.450-472.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brandl H., Gross R. A., Lenz R. W., Fuller R. C. Plastics from bacteria and for bacteria: poly(beta-hydroxyalkanoates) as natural, biocompatible, and biodegradable polyesters. Adv Biochem Eng Biotechnol. 1990;41:77–93. doi: 10.1007/BFb0010232. [DOI] [PubMed] [Google Scholar]
  4. Cortes J., Wiesmann K. E., Roberts G. A., Brown M. J., Staunton J., Leadlay P. F. Repositioning of a domain in a modular polyketide synthase to promote specific chain cleavage. Science. 1995 Jun 9;268(5216):1487–1489. doi: 10.1126/science.7770773. [DOI] [PubMed] [Google Scholar]
  5. Dawes E. A., Senior P. J. The role and regulation of energy reserve polymers in micro-organisms. Adv Microb Physiol. 1973;10:135–266. doi: 10.1016/s0065-2911(08)60088-0. [DOI] [PubMed] [Google Scholar]
  6. Doi Y., Segawa A., Kunioka M. Biosynthesis and characterization of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) in Alcaligenes eutrophus. Int J Biol Macromol. 1990 Apr;12(2):106–111. doi: 10.1016/0141-8130(90)90061-e. [DOI] [PubMed] [Google Scholar]
  7. Felgner P. L., Gadek T. R., Holm M., Roman R., Chan H. W., Wenz M., Northrop J. P., Ringold G. M., Danielsen M. Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci U S A. 1987 Nov;84(21):7413–7417. doi: 10.1073/pnas.84.21.7413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Findlay R. H., White D. C. Polymeric Beta-Hydroxyalkanoates from Environmental Samples and Bacillus megaterium. Appl Environ Microbiol. 1983 Jan;45(1):71–78. doi: 10.1128/aem.45.1.71-78.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fritzsche K., Lenz R. W., Fuller R. C. Bacterial polyesters containing branched poly(beta-hydroxyalkanoate) units. Int J Biol Macromol. 1990 Apr;12(2):92–101. doi: 10.1016/0141-8130(90)90059-j. [DOI] [PubMed] [Google Scholar]
  10. Fritzsche K., Lenz R. W., Fuller R. C. Production of unsaturated polyesters by Pseudomonas oleovorans. Int J Biol Macromol. 1990 Apr;12(2):85–91. doi: 10.1016/0141-8130(90)90058-i. [DOI] [PubMed] [Google Scholar]
  11. Gerngross T. U., Snell K. D., Peoples O. P., Sinskey A. J., Csuhai E., Masamune S., Stubbe J. Overexpression and purification of the soluble polyhydroxyalkanoate synthase from Alcaligenes eutrophus: evidence for a required posttranslational modification for catalytic activity. Biochemistry. 1994 Aug 9;33(31):9311–9320. doi: 10.1021/bi00197a035. [DOI] [PubMed] [Google Scholar]
  12. Herron J. S., King J. D., White D. C. Recovery of Poly-beta-Hydroxybutyrate from Estuarine Microflora. Appl Environ Microbiol. 1978 Feb;35(2):251–257. doi: 10.1128/aem.35.2.251-257.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hopwood D. A., Sherman D. H. Molecular genetics of polyketides and its comparison to fatty acid biosynthesis. Annu Rev Genet. 1990;24:37–66. doi: 10.1146/annurev.ge.24.120190.000345. [DOI] [PubMed] [Google Scholar]
  14. Huber M. L., Paschal J. W., Leeds J. P., Kirst H. A., Wind J. A., Miller F. D., Turner J. R. Branched-chain fatty acids produced by mutants of Streptomyces fradiae, putative precursors of the lactone ring of tylosin. Antimicrob Agents Chemother. 1990 Aug;34(8):1535–1541. doi: 10.1128/aac.34.8.1535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Huijberts G. N., Eggink G., de Waard P., Huisman G. W., Witholt B. Pseudomonas putida KT2442 cultivated on glucose accumulates poly(3-hydroxyalkanoates) consisting of saturated and unsaturated monomers. Appl Environ Microbiol. 1992 Feb;58(2):536–544. doi: 10.1128/aem.58.2.536-544.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Joshi A. K., Smith S. Construction of a cDNA encoding the multifunctional animal fatty acid synthase and expression in Spodoptera frugiperda cells using baculoviral vectors. Biochem J. 1993 Nov 15;296(Pt 1):143–149. doi: 10.1042/bj2960143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Joshi A. K., Smith S. Construction, expression, and characterization of a mutated animal fatty acid synthase deficient in the dehydrase function. J Biol Chem. 1993 Oct 25;268(30):22508–22513. [PubMed] [Google Scholar]
  18. Kirschner K., Bisswanger H. Multifunctional proteins. Annu Rev Biochem. 1976;45:143–166. doi: 10.1146/annurev.bi.45.070176.001043. [DOI] [PubMed] [Google Scholar]
  19. Knobling A., Schiffmann D., Sickinger H. D., Schweizer E. Malonyl and palmityl transferase-less mutants of the yeast fatty-acid-synthetase complex. Eur J Biochem. 1975 Aug 15;56(2):359–367. doi: 10.1111/j.1432-1033.1975.tb02241.x. [DOI] [PubMed] [Google Scholar]
  20. LUNDGREN D. G., PFISTER R. M., MERRICK J. M. STRUCTURE OF POLY-BETA-HYDROXYBUTYRIC ACID GRANULES. J Gen Microbiol. 1964 Mar;34:441–446. doi: 10.1099/00221287-34-3-441. [DOI] [PubMed] [Google Scholar]
  21. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  22. Loudon P. T., Roy P. Assembly of five bluetongue virus proteins expressed by recombinant baculoviruses: inclusion of the largest protein VP1 in the core and virus-like proteins. Virology. 1991 Feb;180(2):798–802. doi: 10.1016/0042-6822(91)90094-r. [DOI] [PubMed] [Google Scholar]
  23. Nawrath C., Poirier Y., Somerville C. Targeting of the polyhydroxybutyrate biosynthetic pathway to the plastids of Arabidopsis thaliana results in high levels of polymer accumulation. Proc Natl Acad Sci U S A. 1994 Dec 20;91(26):12760–12764. doi: 10.1073/pnas.91.26.12760. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Peoples O. P., Sinskey A. J. Poly-beta-hydroxybutyrate (PHB) biosynthesis in Alcaligenes eutrophus H16. Identification and characterization of the PHB polymerase gene (phbC). J Biol Chem. 1989 Sep 15;264(26):15298–15303. [PubMed] [Google Scholar]
  25. Peoples O. P., Sinskey A. J. Poly-beta-hydroxybutyrate biosynthesis in Alcaligenes eutrophus H16. Characterization of the genes encoding beta-ketothiolase and acetoacetyl-CoA reductase. J Biol Chem. 1989 Sep 15;264(26):15293–15297. [PubMed] [Google Scholar]
  26. Poirier Y., Dennis D. E., Klomparens K., Somerville C. Polyhydroxybutyrate, a biodegradable thermoplastic, produced in transgenic plants. Science. 1992 Apr 24;256(5056):520–523. doi: 10.1126/science.256.5056.520. [DOI] [PubMed] [Google Scholar]
  27. Poirier Y., Nawrath C., Somerville C. Production of polyhydroxyalkanoates, a family of biodegradable plastics and elastomers, in bacteria and plants. Biotechnology (N Y) 1995 Feb;13(2):142–150. doi: 10.1038/nbt0295-142. [DOI] [PubMed] [Google Scholar]
  28. Rangan V. S., Witkowski A., Smith S. Isolation of a functional transferase component from the rat fatty acid synthase by limited trypsinization of the subunit monomer. Formation of a stable functional complex between transferase and acyl carrier protein domains. J Biol Chem. 1991 Oct 15;266(29):19180–19185. [PubMed] [Google Scholar]
  29. Smith S., Agradi E., Libertini L., Dileepan K. N. Specific release of the thioesterase component of the fatty acid synthetase multienzyme complex by limited trypsinization. Proc Natl Acad Sci U S A. 1976 Apr;73(4):1184–1188. doi: 10.1073/pnas.73.4.1184. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Smith S. The animal fatty acid synthase: one gene, one polypeptide, seven enzymes. FASEB J. 1994 Dec;8(15):1248–1259. [PubMed] [Google Scholar]
  31. Stachelhaus T., Marahiel M. A. Modular structure of genes encoding multifunctional peptide synthetases required for non-ribosomal peptide synthesis. FEMS Microbiol Lett. 1995 Jan 1;125(1):3–14. doi: 10.1111/j.1574-6968.1995.tb07328.x. [DOI] [PubMed] [Google Scholar]
  32. Steinbüchel A., Schlegel H. G. Physiology and molecular genetics of poly(beta-hydroxy-alkanoic acid) synthesis in Alcaligenes eutrophus. Mol Microbiol. 1991 Mar;5(3):535–542. doi: 10.1111/j.1365-2958.1991.tb00725.x. [DOI] [PubMed] [Google Scholar]
  33. Stoops J. K., Arslanian M. J., Oh Y. H., Aune K. C., Vanaman T. C., Wakil S. J. Presence of two polypeptide chains comprising fatty acid synthetase. Proc Natl Acad Sci U S A. 1975 May;72(5):1940–1944. doi: 10.1073/pnas.72.5.1940. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Tsukamoto Y., Wakil S. J. Isolation and mapping of the beta-hydroxyacyl dehydratase activity of chicken liver fatty acid synthase. J Biol Chem. 1988 Nov 5;263(31):16225–16229. [PubMed] [Google Scholar]
  35. WAKIL S., BRESSLER R. Studies on the mechanism of fatty acid synthesis. X. Reduced triphosphopyridine nucleotide-acetoacetyl coenzyme A reductase. J Biol Chem. 1962 Mar;237:687–693. [PubMed] [Google Scholar]
  36. Williams M. D., Fieno A. M., Grant R. A., Sherman D. H. Expression and analysis of a bacterial poly(hydroxyalkanoate) synthase in insect cells using a baculovirus system. Protein Expr Purif. 1996 Mar;7(2):203–211. doi: 10.1006/prep.1996.0028. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES