Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1996 Jul;62(7):2629–2635. doi: 10.1128/aem.62.7.2629-2635.1996

Isolation and characterization of a copper-resistant methanogen from a copper-mining soil sample.

B K Kim 1, E C de Macario 1, J Nölling 1, L Daniels 1
PMCID: PMC168042  PMID: 8779599

Abstract

A copper-resistant methanogen for which the CuSO4 MICs were approximately 2- to 36-fold higher than those for other methanogens tested was isolated from a copper-mining area in the upper peninsula of Michigan. The rod-shaped methanogen used H2-CO2 or formate, but not acetate or methanol, as a growth substrate. Standing incubation with H2-CO2 medium resulted in a mat-like surface growth, dependent on the presence of hydrogen. The presence of 1 mM cupric salt resulted in longer filamentous and intertwined cells. Antigenic fingerprinting, 16S rRNA gene analysis, morphology, and substrate use suggest that the new isolate is a novel strain of Methanobacterium bryantii that is able to use formate.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bender C. L., Malvick D. K., Conway K. E., George S., Pratt P. Characterization of pXV10A, a Copper Resistance Plasmid in Xanthomonas campestris pv. vesicatoria. Appl Environ Microbiol. 1990 Jan;56(1):170–175. doi: 10.1128/aem.56.1.170-175.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Beveridge T. J., Murray R. G. Uptake and retention of metals by cell walls of Bacillus subtilis. J Bacteriol. 1976 Sep;127(3):1502–1518. doi: 10.1128/jb.127.3.1502-1518.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bi E., Dai K., Subbarao S., Beall B., Lutkenhaus J. FtsZ and cell division. Res Microbiol. 1991 Feb-Apr;142(2-3):249–252. doi: 10.1016/0923-2508(91)90037-b. [DOI] [PubMed] [Google Scholar]
  4. Cooksey D. A., Azad H. R., Cha J. S., Lim C. K. Copper resistance gene homologs in pathogenic and saprophytic bacterial species from tomato. Appl Environ Microbiol. 1990 Feb;56(2):431–435. doi: 10.1128/aem.56.2.431-435.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cooksey D. A. Copper uptake and resistance in bacteria. Mol Microbiol. 1993 Jan;7(1):1–5. doi: 10.1111/j.1365-2958.1993.tb01091.x. [DOI] [PubMed] [Google Scholar]
  6. Corton J. C., Ward J. E., Jr, Lutkenhaus J. Analysis of cell division gene ftsZ (sulB) from gram-negative and gram-positive bacteria. J Bacteriol. 1987 Jan;169(1):1–7. doi: 10.1128/jb.169.1.1-7.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Daniels L., Belay N., Rajagopal B. S., Weimer P. J. Bacterial Methanogenesis and Growth from CO2 with Elemental Iron as the Sole Source of Electrons. Science. 1987 Jul 31;237(4814):509–511. doi: 10.1126/science.237.4814.509. [DOI] [PubMed] [Google Scholar]
  8. Davis G. K. High-level copper feeding of swine and poultry and the ecology. Fed Proc. 1974 May;33(5):1194–1196. [PubMed] [Google Scholar]
  9. Embley T. M., Smida J., Stackebrandt E. Reverse transcriptase sequencing of 16S ribosomal RNA from Faenia rectivirgula, Pseudonocardia thermophila and Saccharopolyspora hirsuta, three wall type IV actinomycetes which lack mycolic acids. J Gen Microbiol. 1988 Apr;134(4):961–966. doi: 10.1099/00221287-134-4-961. [DOI] [PubMed] [Google Scholar]
  10. Harwood-Sears V., Gordon A. S. Copper-induced production of copper-binding supernatant proteins by the marine bacterium Vibrio alginolyticus. Appl Environ Microbiol. 1990 May;56(5):1327–1332. doi: 10.1128/aem.56.5.1327-1332.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kim B. K., Pihl T. D., Reeve J. N., Daniels L. Purification of the copper response extracellular proteins secreted by the copper-resistant methanogen Methanobacterium bryantii BKYH and cloning, sequencing, and transcription of the gene encoding these proteins. J Bacteriol. 1995 Dec;177(24):7178–7185. doi: 10.1128/jb.177.24.7178-7185.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kim Byoung-Kwan, Daniels Lacy. Unexpected Errors in Gas Chromatographic Analysis of Methane Production by Thermophilic Bacteria. Appl Environ Microbiol. 1991 Jun;57(6):1866–1869. doi: 10.1128/aem.57.6.1866-1869.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lutkenhaus J. FtsZ ring in bacterial cytokinesis. Mol Microbiol. 1993 Aug;9(3):403–409. doi: 10.1111/j.1365-2958.1993.tb01701.x. [DOI] [PubMed] [Google Scholar]
  14. Margolin W., Corbo J. C., Long S. R. Cloning and characterization of a Rhizobium meliloti homolog of the Escherichia coli cell division gene ftsZ. J Bacteriol. 1991 Sep;173(18):5822–5830. doi: 10.1128/jb.173.18.5822-5830.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Marquis R. E., Mayzel K., Carstensen E. L. Cation exchange in cell walls of gram-positive bacteria. Can J Microbiol. 1976 Jul;22(7):975–982. doi: 10.1139/m76-142. [DOI] [PubMed] [Google Scholar]
  16. Mayerhofer L. E., Macario A. J., Conway de Macario E. Lamina, a novel multicellular form of Methanosarcina mazei S-6. J Bacteriol. 1992 Jan;174(1):309–314. doi: 10.1128/jb.174.1.309-314.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Mendelson N. H. Helical Bacillus subtilis macrofibers: morphogenesis of a bacterial multicellular macroorganism. Proc Natl Acad Sci U S A. 1978 May;75(5):2478–2482. doi: 10.1073/pnas.75.5.2478. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Mendelson N. H. Production and initial characterization of bionites: materials formed on a bacterial backbone. Science. 1992 Dec 4;258(5088):1633–1636. doi: 10.1126/science.1455245. [DOI] [PubMed] [Google Scholar]
  19. Migas J., Anderson K. L., Cruden D. L., Markovetz A. J. Chemotaxis in Methanospirillum hungatei. Appl Environ Microbiol. 1989 Jan;55(1):264–265. doi: 10.1128/aem.55.1.264-265.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Mukherjee A., Dai K., Lutkenhaus J. Escherichia coli cell division protein FtsZ is a guanine nucleotide binding protein. Proc Natl Acad Sci U S A. 1993 Feb 1;90(3):1053–1057. doi: 10.1073/pnas.90.3.1053. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Rouch D., Camakaris J., Lee B. T., Luke R. K. Inducible plasmid-mediated copper resistance in Escherichia coli. J Gen Microbiol. 1985 Apr;131(4):939–943. doi: 10.1099/00221287-131-4-939. [DOI] [PubMed] [Google Scholar]
  22. Silver S., Walderhaug M. Gene regulation of plasmid- and chromosome-determined inorganic ion transport in bacteria. Microbiol Rev. 1992 Mar;56(1):195–228. doi: 10.1128/mr.56.1.195-228.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Sment K. A., Konisky J. Chemotaxis in the archaebacterium Methanococcus voltae. J Bacteriol. 1989 May;171(5):2870–2872. doi: 10.1128/jb.171.5.2870-2872.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Ward J. E., Jr, Lutkenhaus J. Overproduction of FtsZ induces minicell formation in E. coli. Cell. 1985 Oct;42(3):941–949. doi: 10.1016/0092-8674(85)90290-9. [DOI] [PubMed] [Google Scholar]
  25. Williams J. R., Morgan A. G., Rouch D. A., Brown N. L., Lee B. T. Copper-resistant enteric bacteria from United Kingdom and Australian piggeries. Appl Environ Microbiol. 1993 Aug;59(8):2531–2537. doi: 10.1128/aem.59.8.2531-2537.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES