Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1996 Jul;62(7):2644–2646. doi: 10.1128/aem.62.7.2644-2646.1996

Effects of atrazine on Ochrobactrum anthropi membrane fatty acids.

D Laura 1, G De Socio 1, R Frassanito 1, D Rotilio 1
PMCID: PMC168045  PMID: 8779602

Abstract

Ochrobactrum anthropi is a gram-negative bacillus recognized as a human opportunist pathogen isolated in clinical specimens and not of clinical significance. We report a new aspect of this bacterium, that it has been isolated from activated sludge. In fact, it is able to grow on atrazine (2-chloro-4-ethylamino-6-isopropyl-amine-s-triazine) by utilizing it as the only source of carbon. Our results show that atrazine (0.03 g/liter) causes a dramatical increase in the degree of saturation of membrane fatty acids. Analysis and identification of bacterial fatty acids were performed by gas chromatography and gas chromatography-mass spectrometry techniques.

Full Text

The Full Text of this article is available as a PDF (196.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alnor D., Frimodt-Møller N., Espersen F., Frederiksen W. Infections with the unusual human pathogens Agrobacterium species and Ochrobactrum anthropi. Clin Infect Dis. 1994 Jun;18(6):914–920. doi: 10.1093/clinids/18.6.914. [DOI] [PubMed] [Google Scholar]
  2. Heipieper H. J., Diefenbach R., Keweloh H. Conversion of cis unsaturated fatty acids to trans, a possible mechanism for the protection of phenol-degrading Pseudomonas putida P8 from substrate toxicity. Appl Environ Microbiol. 1992 Jun;58(6):1847–1852. doi: 10.1128/aem.58.6.1847-1852.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Heipieper H. J., Keweloh H., Rehm H. J. Influence of phenols on growth and membrane permeability of free and immobilized Escherichia coli. Appl Environ Microbiol. 1991 Apr;57(4):1213–1217. doi: 10.1128/aem.57.4.1213-1217.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Kern W. V., Oethinger M., Kaufhold A., Rozdzinski E., Marre R. Ochrobactrum anthropi bacteremia: report of four cases and short review. Infection. 1993 Sep-Oct;21(5):306–310. doi: 10.1007/BF01712451. [DOI] [PubMed] [Google Scholar]
  5. Keweloh H., Diefenbach R., Rehm H. J. Increase of phenol tolerance of Escherichia coli by alterations of the fatty acid composition of the membrane lipids. Arch Microbiol. 1991;157(1):49–53. doi: 10.1007/BF00245334. [DOI] [PubMed] [Google Scholar]
  6. Orgambide G. G., Hollingsworth R. I., Dazzo F. B. Structural characterization of a novel diglycosyl diacylglyceride glycolipid from Rhizobium trifolii ANU843. Carbohydr Res. 1992 Sep 2;233:151–159. doi: 10.1016/s0008-6215(00)90927-3. [DOI] [PubMed] [Google Scholar]
  7. Sikkema J., de Bont J. A., Poolman B. Interactions of cyclic hydrocarbons with biological membranes. J Biol Chem. 1994 Mar 18;269(11):8022–8028. [PubMed] [Google Scholar]
  8. Sinensky M. Homeoviscous adaptation--a homeostatic process that regulates the viscosity of membrane lipids in Escherichia coli. Proc Natl Acad Sci U S A. 1974 Feb;71(2):522–525. doi: 10.1073/pnas.71.2.522. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES