Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1996 Aug;62(8):2692–2700. doi: 10.1128/aem.62.8.2692-2700.1996

Purification and characterization of a malic enzyme from the ruminal bacterium Streptococcus bovis ATCC 15352 and cloning and sequencing of its gene.

S Kawai 1, H Suzuki 1, K Yamamoto 1, M Inui 1, H Yukawa 1, H Kumagai 1
PMCID: PMC168054  PMID: 8702261

Abstract

Malic enzyme (EC 1.1.1.39), which catalyzes L-malate oxidative decarboxylation and pyruvate reductive carboxylation, was purified to homogeneity from Streptococcus bovis ATCC 15352, and properties of this enzyme were determined. The 2.9-kb fragment containing the malic enzyme gene was cloned, and the sequence was determined and analyzed. The enzymatic properties of the S. bovis malic enzyme were almost identical to those of other malic enzymes previously reported. However, we found that the S. bovis malic enzyme catalyzed unknown enzymatic reactions, including reduction of 2-oxoisovalerate, reduction of 2-oxoisocaproate, oxidation of D-2-hydroxyisovalerate, and oxidation of D-2-hydroxyisocaproate. The requirement for cations and the optimum pH of these unique activities were different from the requirement for cations and the optimum pH of the L-malate oxidative decarboxylating activity. A sequence analysis of the cloned fragment revealed the presence of two open reading frames that were 1,299 and 1,170 nucleotides long. The 389-amino-acid polypeptide deduced from the 1,170-nucleotide open reading frame was identified as the malic enzyme; this enzyme exhibited high levels of similarity to malic enzymes of Bacillus stearothermophilus and Haemophilus influenzae and was also similar to other malic enzymes and the malolactic enzyme of Lactococcus lactis.

Full Text

The Full Text of this article is available as a PDF (327.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  2. Ansanay V., Dequin S., Blondin B., Barre P. Cloning, sequence and expression of the gene encoding the malolactic enzyme from Lactococcus lactis. FEBS Lett. 1993 Oct 11;332(1-2):74–80. doi: 10.1016/0014-5793(93)80488-g. [DOI] [PubMed] [Google Scholar]
  3. Anschutz A. L., Um H. D., Siegel N. R., Veron M., Klein C. P36, a Dictyostelium discoideum protein whose phosphorylation is stimulated by GDP, is homologous to the alpha-subunit of succinyl-CoA synthetase. Biochim Biophys Acta. 1993 Mar 5;1162(1-2):40–46. doi: 10.1016/0167-4838(93)90125-b. [DOI] [PubMed] [Google Scholar]
  4. Bartolucci S., Rella R., Guagliardi A., Raia C. A., Gambacorta A., De Rosa M., Rossi M. Malic enzyme from archaebacterium Sulfolobus solfataricus. Purification, structure, and kinetic properties. J Biol Chem. 1987 Jun 5;262(16):7725–7731. [PubMed] [Google Scholar]
  5. Chou W. Y., Huang S. M., Liu Y. H., Chang G. G. Cloning and expression of pigeon liver cytosolic NADP(+)-dependent malic enzyme cDNA and some of its abortive mutants. Arch Biochem Biophys. 1994 Apr;310(1):158–166. doi: 10.1006/abbi.1994.1152. [DOI] [PubMed] [Google Scholar]
  6. DEIBEL R. H. THE GROUP D STREPTOCOCCI. Bacteriol Rev. 1964 Sep;28:330–366. doi: 10.1128/br.28.3.330-366.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Denayrolles M., Aigle M., Lonvaud-Funel A. Cloning and sequence analysis of the gene encoding Lactococcus lactis malolactic enzyme: relationships with malic enzymes. FEMS Microbiol Lett. 1994 Feb 1;116(1):79–86. doi: 10.1111/j.1574-6968.1994.tb06679.x. [DOI] [PubMed] [Google Scholar]
  8. Diesterhaft M. D., Freese E. Role of pyruvate carboxylase, phosphoenolpyruvate carboxykinase, and malic enzyme during growth and sporulation of Bacillus subtilis. J Biol Chem. 1973 Sep 10;248(17):6062–6070. [PubMed] [Google Scholar]
  9. Fleischmann R. D., Adams M. D., White O., Clayton R. A., Kirkness E. F., Kerlavage A. R., Bult C. J., Tomb J. F., Dougherty B. A., Merrick J. M. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science. 1995 Jul 28;269(5223):496–512. doi: 10.1126/science.7542800. [DOI] [PubMed] [Google Scholar]
  10. Fodge D. W., Gracy R. W., Harris B. G. Studies on enzymes from parasitic helminths. I. Purification and physical properties of malic enzyme from the muscle tissue of Ascaris suum. Biochim Biophys Acta. 1972 May 12;268(2):271–284. doi: 10.1016/0005-2744(72)90322-1. [DOI] [PubMed] [Google Scholar]
  11. Grissom C. B., Cleland W. W. Isotope effect studies of chicken liver NADP malic enzyme: role of the metal ion and viscosity dependence. Biochemistry. 1988 Apr 19;27(8):2927–2934. doi: 10.1021/bi00408a039. [DOI] [PubMed] [Google Scholar]
  12. Hansen E. J., Juni E. Isolation of mutants of Escherichia coli lacking NAD- and NADP-linked malic. Biochem Biophys Res Commun. 1975 Jul 22;65(2):559–566. doi: 10.1016/s0006-291x(75)80183-5. [DOI] [PubMed] [Google Scholar]
  13. Hino T., Russell J. B. Effect of reducing-equivalent disposal and NADH/NAD on deamination of amino acids by intact rumen microorganisms and their cell extracts. Appl Environ Microbiol. 1985 Dec;50(6):1368–1374. doi: 10.1128/aem.50.6.1368-1374.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hsu R. Y., Glynias M. J., Satterlee J., Feeney R., Clarke A. R., Emery D. C., Roe B. A., Wilson R. K., Goodridge A. G., Holbrook J. J. Duck liver 'malic' enzyme. Expression in Escherichia coli and characterization of the wild-type enzyme and site-directed mutants. Biochem J. 1992 Jun 15;284(Pt 3):869–876. doi: 10.1042/bj2840869. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hsu R. Y., Lardy H. A. Pigeon liver malic enzyme. II. Isolation, crystallization, and some properties. J Biol Chem. 1967 Feb 10;242(3):520–526. [PubMed] [Google Scholar]
  16. Iwakura M., Hattori J., Arita Y., Tokushige M., Katsuki H. Studies on regulatory functions of malic enzymes. VI. Purification and molecular properties of NADP-linked malic enzyme from Escherichia coli W. J Biochem. 1979 May;85(5):1355–1365. [PubMed] [Google Scholar]
  17. Karsten W. E., Gavva S. R., Park S. H., Cook P. F. Metal ion activator effects on intrinsic isotope effects for hydride transfer from decarboxylation in the reaction catalyzed by the NAD-malic enzyme from Ascaris suum. Biochemistry. 1995 Mar 14;34(10):3253–3260. doi: 10.1021/bi00010a015. [DOI] [PubMed] [Google Scholar]
  18. Kobayashi K., Doi S., Negoro S., Urabe I., Okada H. Structure and properties of malic enzyme from Bacillus stearothermophilus. J Biol Chem. 1989 Feb 25;264(6):3200–3205. [PubMed] [Google Scholar]
  19. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  20. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  21. Lamed R., Zeikus J. G. Thermostable, ammonium-activated malic enzyme of Clostridium thermocellum. Biochim Biophys Acta. 1981 Aug 13;660(2):251–255. doi: 10.1016/0005-2744(81)90167-4. [DOI] [PubMed] [Google Scholar]
  22. Li T., Gracy R. W., Harris B. G. Studies on enzymes from parasitic helminths. II. Purification and properties of malic enzyme from the tapeworm, Hymenolepis diminuta. Arch Biochem Biophys. 1972 Jun;150(2):397–406. doi: 10.1016/0003-9861(72)90055-0. [DOI] [PubMed] [Google Scholar]
  23. Loeber G., Infante A. A., Maurer-Fogy I., Krystek E., Dworkin M. B. Human NAD(+)-dependent mitochondrial malic enzyme. cDNA cloning, primary structure, and expression in Escherichia coli. J Biol Chem. 1991 Feb 15;266(5):3016–3021. [PubMed] [Google Scholar]
  24. London J., Meyer E. Y. Malate utilization by a group D Streptococcus: physiological properties and purification of an inducible malic enzyme. J Bacteriol. 1969 May;98(2):705–711. doi: 10.1128/jb.98.2.705-711.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. MARTIN W. R., NIVEN C. F., Jr Mode of carbon dioxide fixation by the minute streptococci. J Bacteriol. 1960 Feb;79:295–298. doi: 10.1128/jb.79.2.295-298.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. MICKELSON M. N. CHEMICALLY DEFINED MEDIUM FOR GROWTH STREPTOCOCCUS PYOGENES. J Bacteriol. 1964 Jul;88:158–164. doi: 10.1128/jb.88.1.158-164.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Mahajan S. K., Chu C. C., Willis D. K., Templin A., Clark A. J. Physical analysis of spontaneous and mutagen-induced mutants of Escherichia coli K-12 expressing DNA exonuclease VIII activity. Genetics. 1990 Jun;125(2):261–273. doi: 10.1093/genetics/125.2.261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Manabe T., Tachi K., Kojima K., Okuyama T. Two-dimensional electrophoresis of plasma proteins without denaturing agents. J Biochem. 1979 Mar;85(3):649–659. [PubMed] [Google Scholar]
  29. Matula T. I., McDonald I. J., Martin S. M. CO2 fixation by malic enzyme in a species of Micrococcus. Biochem Biophys Res Commun. 1969 Mar 31;34(6):795–802. doi: 10.1016/0006-291x(69)90250-2. [DOI] [PubMed] [Google Scholar]
  30. Pearson W. R., Lipman D. J. Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2444–2448. doi: 10.1073/pnas.85.8.2444. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Rothermel B. A., Nelson T. Primary structure of the maize NADP-dependent malic enzyme. J Biol Chem. 1989 Nov 25;264(33):19587–19592. [PubMed] [Google Scholar]
  32. Victor R., Lachica F., Hartman P. A. Carbon dioxide fixation and the synthesis of aspartic acid by S. faecium var. Durans. Biochem Biophys Res Commun. 1968 Aug 21;32(4):691–695. doi: 10.1016/0006-291x(68)90294-5. [DOI] [PubMed] [Google Scholar]
  33. Viljoen M., Subden R. E., Krizus A., Van Vuuren H. J. Molecular analysis of the malic enzyme gene (mae2) of Schizosaccharomyces pombe. Yeast. 1994 May;10(5):613–624. doi: 10.1002/yea.320100506. [DOI] [PubMed] [Google Scholar]
  34. WOLIN M. J., MANNING G. B., NELSON W. O. Ammonium salts as a sole source of nitrogen for the growth of Streptococcus bovis. J Bacteriol. 1959 Jul;78(1):147–147. doi: 10.1128/jb.78.1.147-147.1959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. WRIGHT D. E. The metabolism of carbon dioxide by Streptococcus bovis. J Gen Microbiol. 1960 Jun;22:713–725. doi: 10.1099/00221287-22-3-713. [DOI] [PubMed] [Google Scholar]
  36. Wallbrandt P., Tegman V., Jonsson B. H., Wieslander A. Identification and analysis of the genes coding for the putative pyruvate dehydrogenase enzyme complex in Acholeplasma laidlawii. J Bacteriol. 1992 Feb;174(4):1388–1396. doi: 10.1128/jb.174.4.1388-1396.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Walter M. H., Grima-Pettenati J., Grand C., Boudet A. M., Lamb C. J. Cinnamyl-alcohol dehydrogenase, a molecular marker specific for lignin synthesis: cDNA cloning and mRNA induction by fungal elicitor. Proc Natl Acad Sci U S A. 1988 Aug;85(15):5546–5550. doi: 10.1073/pnas.85.15.5546. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Wei C. H., Chou W. Y., Huang S. M., Lin C. C., Chang G. G. Affinity cleavage at the putative metal-binding site of pigeon liver malic enzyme by the Fe(2+)-ascorbate system. Biochemistry. 1994 Jun 28;33(25):7931–7936. doi: 10.1021/bi00191a021. [DOI] [PubMed] [Google Scholar]
  39. Whitehead T. R., Cotta M. A. Development of a DNA probe for Streptococcus bovis by using a cloned amylase gene. J Clin Microbiol. 1993 Sep;31(9):2387–2391. doi: 10.1128/jcm.31.9.2387-2391.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Wierenga R. K., Terpstra P., Hol W. G. Prediction of the occurrence of the ADP-binding beta alpha beta-fold in proteins, using an amino acid sequence fingerprint. J Mol Biol. 1986 Jan 5;187(1):101–107. doi: 10.1016/0022-2836(86)90409-2. [DOI] [PubMed] [Google Scholar]
  41. Wyrambik D., Grisebach H. Enzymic synthesis of lignin precursors. Further studies on cinnamyl-alcohol dehydrogenase from soybean-cell-suspension cultures. Eur J Biochem. 1979 Jul;97(2):503–509. doi: 10.1111/j.1432-1033.1979.tb13138.x. [DOI] [PubMed] [Google Scholar]
  42. YOSHIDA A., FREESE E. PURIFICATION AND CHEMICAL CHARACTERIZATION OF ALANINE DEHYDROGENASE OF BACILLUS SUBTILIS. Biochim Biophys Acta. 1964 Oct 23;92:33–43. doi: 10.1016/0926-6569(64)90266-4. [DOI] [PubMed] [Google Scholar]
  43. Yamaguchi M., Tokushige M., Katsuki H. Studies on regulatory functions of malic enzymes. II. Purification and molecular properties of nicotinamide adenine dinucleotide-linked malic enzyme from Eschericha coli. J Biochem. 1973 Jan;73(1):169–180. [PubMed] [Google Scholar]
  44. Zelewski M., Swierczyński J. Malic enzyme in human liver. Intracellular distribution, purification and properties of cytosolic isozyme. Eur J Biochem. 1991 Oct 15;201(2):339–345. doi: 10.1111/j.1432-1033.1991.tb16291.x. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES