Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1996 Aug;62(8):2735–2740. doi: 10.1128/aem.62.8.2735-2740.1996

Survival of Escherichia coli O157:H7 in broth and processed salami as influenced by pH, water activity, and temperature and suitability of media for its recovery.

M R Clavero 1, L R Beuchat 1
PMCID: PMC168058  PMID: 8702265

Abstract

The survival of unheated and heat-stressed (52 degrees C, 30 min) cells of Escherichia coli O157:H7 inoculated into tryptic soy broth (TSB) adjusted to various pHs (6.0, 5.4, and 4.8) with lactic acid and various water activities (a(w)s) (0.99, 0.95, and 0.90) with NaCl and incubated at 5, 20, 30, and 37 degrees C was studied. The performance of tryptic soy agar (TSA), modified sorbitol MacConkey agar (MSMA), and modified eosin methylene blue agar in supporting colony development of incubated cells was determined. Unheated cells of E. coli O157:H7 grew to population densities of 10(8) to 10(9) CFU ml-1 in TSB (pHs 6.0 and 5.4) at an a(w) of 0.99. Regardless of the pH and a(w) of TSB, survival of E. coli O157:H7 was better at 5 degrees C than at 20 or 30 degrees C. At 30 degrees C, inactivation or inhibition of growth was enhanced by reduction of the a(w) and pH. A decrease in the a(w) (0.99 to 0.90) of TSB in which the cells were heated at 52 degrees C for 30 min resulted in a 1.5-log10 reduction in the number of E. coli O157:H7 cells recovered on TSA; pH did not significantly affect the viability of cells. Recovery was significantly reduced on MSMA when cells were heated in TSB with reduced pH or a(w) for an increased length of time. With the exception of TSB (a(w), 0.90) incubated at 37 degrees C, heat-stressed cells survived for 24 h in recovery broth. TSB (a(w), 0.99) at pH 6.0 or 5.4 supported growth of E. coli O157:H7 cells at 20 or 37 degrees C, but higher numbers of heated cells survived at 5 or 20 degrees C than at 37 degrees C. The ability of unheated and heat-stressed E. coli O157:H7 cells to survive or grow as affected by the a(w) of processed salami was investigated. Decreases of about 1 to 2 log10 CFU g-1 occurred soon after inoculation of salami (pHs 4.86 and 4.63 at a(w)s of 0.95 and 0.90, respectively). Regardless of the physiological condition of the cells before inoculation into processed salami at an a(w) of either 0.95 or 0.90, decreases in populations occurred during storage at 5 or 20 degrees C for 32 days. If present at < or = 100 CFU g-1, E. coli O157:H7 would unlikely survive storage at 5 degrees C for 32 days. However, contamination of salami with E. coli O157:H7 at 10(4) to 10(5) CFU g-1 after processing would pose a health risk to consumers for more than 32 days if storage were at 5 degrees C. Regardless of the treatment conditions, performance of the media tested for the recovery of E. coli O157:H7 cells followed the order TSA > modified eosin methylene blue agar > MSMA.

Full Text

The Full Text of this article is available as a PDF (251.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abdul-Raouf U. M., Beuchat L. R., Ammar M. S. Survival and growth of Escherichia coli O157:H7 in ground, roasted beef as affected by pH, acidulants, and temperature. Appl Environ Microbiol. 1993 Aug;59(8):2364–2368. doi: 10.1128/aem.59.8.2364-2368.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Besser R. E., Lett S. M., Weber J. T., Doyle M. P., Barrett T. J., Wells J. G., Griffin P. M. An outbreak of diarrhea and hemolytic uremic syndrome from Escherichia coli O157:H7 in fresh-pressed apple cider. JAMA. 1993 May 5;269(17):2217–2220. [PubMed] [Google Scholar]
  3. Calhoun C. L., Frazier W. C. Effect of available water on thermal resistance of three nonsporeforming species of bacteria. Appl Microbiol. 1966 May;14(3):416–420. doi: 10.1128/am.14.3.416-420.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Conner D. E., Kotrola J. S. Growth and survival of Escherichia coli O157:H7 under acidic conditions. Appl Environ Microbiol. 1995 Jan;61(1):382–385. doi: 10.1128/aem.61.1.382-385.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Doyle M. P., Schoeni J. L. Survival and growth characteristics of Escherichia coli associated with hemorrhagic colitis. Appl Environ Microbiol. 1984 Oct;48(4):855–856. doi: 10.1128/aem.48.4.855-856.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gibson A. M., Bratchell N., Roberts T. A. Predicting microbial growth: growth responses of salmonellae in a laboratory medium as affected by pH, sodium chloride and storage temperature. Int J Food Microbiol. 1988 Mar;6(2):155–178. doi: 10.1016/0168-1605(88)90051-7. [DOI] [PubMed] [Google Scholar]
  7. Glass K. A., Loeffelholz J. M., Ford J. P., Doyle M. P. Fate of Escherichia coli O157:H7 as affected by pH or sodium chloride and in fermented, dry sausage. Appl Environ Microbiol. 1992 Aug;58(8):2513–2516. doi: 10.1128/aem.58.8.2513-2516.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Katsui N., Tsuchido T., Hiramatsu R., Fujikawa S., Takano M., Shibasaki I. Heat-induced blebbing and vesiculation of the outer membrane of Escherichia coli. J Bacteriol. 1982 Sep;151(3):1523–1531. doi: 10.1128/jb.151.3.1523-1531.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ray B., Speck M. L. Discrepancies in the enumeration of Escherichia coli. Appl Microbiol. 1973 Apr;25(4):494–498. doi: 10.1128/am.25.4.494-498.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Rocelle M., Clavero S., Beuchat L. R. Suitability of selective plating media for recovering heat- or freeze-stressed Escherichia coli O157:H7 from tryptic soy broth and ground beef. Appl Environ Microbiol. 1995 Sep;61(9):3268–3273. doi: 10.1128/aem.61.9.3268-3273.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Zhao T., Doyle M. P., Besser R. E. Fate of enterohemorrhagic Escherichia coli O157:H7 in apple cider with and without preservatives. Appl Environ Microbiol. 1993 Aug;59(8):2526–2530. doi: 10.1128/aem.59.8.2526-2530.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES