Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1996 Aug;62(8):2753–2757. doi: 10.1128/aem.62.8.2753-2757.1996

Different domains of Bacillus thuringiensis delta-endotoxins can bind to insect midgut membrane proteins on ligand blots.

R A de Maagd 1, H van der Klei 1, P L Bakker 1, W J Stiekema 1, D Bosch 1
PMCID: PMC168060  PMID: 8702267

Abstract

We investigated the role of the constituent domains of the CryIA(b) and CryIA(c) delta-endotoxins in binding to midgut epithelial cell membrane proteins of Spodoptera exigua and Manduca sexta on ligand blots. A collection of wild-type and CryIC-CryIA hybrid toxins was used for this purpose. As demonstrated elsewhere (R. A. de Maagd, M. S. G. Kwa, H. van der Klei, T. Yamamoto, B. Schipper, J. M. Vlak, W. J. Stiekema, and D. Bosch, Appl. Environ. Microbiol. 62:1537-1543, 1996), CryIA(b) domain III recognized a 205-kDa protein on S. exigua blots, while no specific binding by domain I or II could be detected. In contrast, on ligand blots of M. sexta proteins CryIA(b) domain II recognized a 210-kDa protein and CryIA(b) domain III recognized a 250-kDa protein. Domain III is responsible for the interaction of CryIA(c) with 120-kDa major binding proteins of both S. exigua and M. sexta. In addition, in M. sexta CryIA(c) also reacts with a 210-kDa binding protein through its domain I and/or domain II. These results show that besides domain II, domain III of delta-endotoxins plays a major role in binding to putative receptors on ligand blots. However, for S. exigua there was no clear correlation between binding of toxins on ligand blots and the in vivo toxicity of the toxins. These and previous results suggest that interactions of insect membrane proteins with both domain II and domain III can occur and that detection of these interactions depends on the type of binding assay used.

Full Text

The Full Text of this article is available as a PDF (278.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bosch D., Schipper B., van der Kleij H., de Maagd R. A., Stiekema W. J. Recombinant Bacillus thuringiensis crystal proteins with new properties: possibilities for resistance management. Biotechnology (N Y) 1994 Sep;12(9):915–918. doi: 10.1038/nbt0994-915. [DOI] [PubMed] [Google Scholar]
  2. Bosch D., Visser B., Stiekema W. J. Analysis of non-active engineered Bacillus thuringiensis crystal proteins. FEMS Microbiol Lett. 1994 May 1;118(1-2):129–133. doi: 10.1111/j.1574-6968.1994.tb06814.x. [DOI] [PubMed] [Google Scholar]
  3. Cowles E. A., Yunovitz H., Charles J. F., Gill S. S. Comparison of toxin overlay and solid-phase binding assays to identify diverse CryIA(c) toxin-binding proteins in Heliothis virescens midgut. Appl Environ Microbiol. 1995 Jul;61(7):2738–2744. doi: 10.1128/aem.61.7.2738-2744.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ferré J., Real M. D., Van Rie J., Jansens S., Peferoen M. Resistance to the Bacillus thuringiensis bioinsecticide in a field population of Plutella xylostella is due to a change in a midgut membrane receptor. Proc Natl Acad Sci U S A. 1991 Jun 15;88(12):5119–5123. doi: 10.1073/pnas.88.12.5119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Garczynski S. F., Crim J. W., Adang M. J. Identification of putative insect brush border membrane-binding molecules specific to Bacillus thuringiensis delta-endotoxin by protein blot analysis. Appl Environ Microbiol. 1991 Oct;57(10):2816–2820. doi: 10.1128/aem.57.10.2816-2820.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gill S. S., Cowles E. A., Francis V. Identification, isolation, and cloning of a Bacillus thuringiensis CryIAc toxin-binding protein from the midgut of the lepidopteran insect Heliothis virescens. J Biol Chem. 1995 Nov 10;270(45):27277–27282. doi: 10.1074/jbc.270.45.27277. [DOI] [PubMed] [Google Scholar]
  7. Grochulski P., Masson L., Borisova S., Pusztai-Carey M., Schwartz J. L., Brousseau R., Cygler M. Bacillus thuringiensis CryIA(a) insecticidal toxin: crystal structure and channel formation. J Mol Biol. 1995 Dec 1;254(3):447–464. doi: 10.1006/jmbi.1995.0630. [DOI] [PubMed] [Google Scholar]
  8. Hofmann C., Vanderbruggen H., Höfte H., Van Rie J., Jansens S., Van Mellaert H. Specificity of Bacillus thuringiensis delta-endotoxins is correlated with the presence of high-affinity binding sites in the brush border membrane of target insect midguts. Proc Natl Acad Sci U S A. 1988 Nov;85(21):7844–7848. doi: 10.1073/pnas.85.21.7844. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Honée G., Convents D., Van Rie J., Jansens S., Peferoen M., Visser B. The C-terminal domain of the toxic fragment of a Bacillus thuringiensis crystal protein determines receptor binding. Mol Microbiol. 1991 Nov;5(11):2799–2806. doi: 10.1111/j.1365-2958.1991.tb01988.x. [DOI] [PubMed] [Google Scholar]
  10. Höfte H., Whiteley H. R. Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol Rev. 1989 Jun;53(2):242–255. doi: 10.1128/mr.53.2.242-255.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Knight P. J., Crickmore N., Ellar D. J. The receptor for Bacillus thuringiensis CrylA(c) delta-endotoxin in the brush border membrane of the lepidopteran Manduca sexta is aminopeptidase N. Mol Microbiol. 1994 Feb;11(3):429–436. doi: 10.1111/j.1365-2958.1994.tb00324.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Knight P. J., Knowles B. H., Ellar D. J. Molecular cloning of an insect aminopeptidase N that serves as a receptor for Bacillus thuringiensis CryIA(c) toxin. J Biol Chem. 1995 Jul 28;270(30):17765–17770. doi: 10.1074/jbc.270.30.17765. [DOI] [PubMed] [Google Scholar]
  13. Lee M. K., Rajamohan F., Gould F., Dean D. H. Resistance to Bacillus thuringiensis CryIA delta-endotoxins in a laboratory-selected Heliothis virescens strain is related to receptor alteration. Appl Environ Microbiol. 1995 Nov;61(11):3836–3842. doi: 10.1128/aem.61.11.3836-3842.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lee M. K., Young B. A., Dean D. H. Domain III exchanges of Bacillus thuringiensis CryIA toxins affect binding to different gypsy moth midgut receptors. Biochem Biophys Res Commun. 1995 Nov 2;216(1):306–312. doi: 10.1006/bbrc.1995.2625. [DOI] [PubMed] [Google Scholar]
  15. Li J. D., Carroll J., Ellar D. J. Crystal structure of insecticidal delta-endotoxin from Bacillus thuringiensis at 2.5 A resolution. Nature. 1991 Oct 31;353(6347):815–821. doi: 10.1038/353815a0. [DOI] [PubMed] [Google Scholar]
  16. Martínez-Ramírez A. C., González-Nebauer S., Escriche B., Real M. D. Ligand blot identification of a Manduca sexta midgut binding protein specific to three Bacillus thuringiensis CryIA-type ICPs. Biochem Biophys Res Commun. 1994 Jun 15;201(2):782–787. doi: 10.1006/bbrc.1994.1769. [DOI] [PubMed] [Google Scholar]
  17. Masson L., Lu Y. J., Mazza A., Brousseau R., Adang M. J. The CryIA(c) receptor purified from Manduca sexta displays multiple specificities. J Biol Chem. 1995 Sep 1;270(35):20309–20315. doi: 10.1074/jbc.270.35.20309. [DOI] [PubMed] [Google Scholar]
  18. Oddou P., Hartmann H., Radecke F., Geiser M. Immunologically unrelated Heliothis sp. and Spodoptera sp. midgut membrane-proteins bind Bacillus thuringiensis CryIA(b) delta-endotoxin. Eur J Biochem. 1993 Feb 15;212(1):145–150. doi: 10.1111/j.1432-1033.1993.tb17644.x. [DOI] [PubMed] [Google Scholar]
  19. Sanchis V., Ellar D. J. Identification and partial purification of a Bacillus thuringiensis CryIC delta-endotoxin binding protein from Spodoptera littoralis gut membranes. FEBS Lett. 1993 Feb 1;316(3):264–268. doi: 10.1016/0014-5793(93)81305-j. [DOI] [PubMed] [Google Scholar]
  20. Vadlamudi R. K., Ji T. H., Bulla L. A., Jr A specific binding protein from Manduca sexta for the insecticidal toxin of Bacillus thuringiensis subsp. berliner. J Biol Chem. 1993 Jun 15;268(17):12334–12340. [PubMed] [Google Scholar]
  21. Vadlamudi R. K., Weber E., Ji I., Ji T. H., Bulla L. A., Jr Cloning and expression of a receptor for an insecticidal toxin of Bacillus thuringiensis. J Biol Chem. 1995 Mar 10;270(10):5490–5494. doi: 10.1074/jbc.270.10.5490. [DOI] [PubMed] [Google Scholar]
  22. Valaitis A. P., Lee M. K., Rajamohan F., Dean D. H. Brush border membrane aminopeptidase-N in the midgut of the gypsy moth serves as the receptor for the CryIA(c) delta-endotoxin of Bacillus thuringiensis. Insect Biochem Mol Biol. 1995 Dec;25(10):1143–1151. doi: 10.1016/0965-1748(95)00050-x. [DOI] [PubMed] [Google Scholar]
  23. Van Rie J., Jansens S., Höfte H., Degheele D., Van Mellaert H. Specificity of Bacillus thuringiensis delta-endotoxins. Importance of specific receptors on the brush border membrane of the mid-gut of target insects. Eur J Biochem. 1989 Dec 8;186(1-2):239–247. doi: 10.1111/j.1432-1033.1989.tb15201.x. [DOI] [PubMed] [Google Scholar]
  24. Van Rie J., McGaughey W. H., Johnson D. E., Barnett B. D., Van Mellaert H. Mechanism of insect resistance to the microbial insecticide Bacillus thuringiensis. Science. 1990 Jan 5;247(4938):72–74. doi: 10.1126/science.2294593. [DOI] [PubMed] [Google Scholar]
  25. de Maagd R. A., Kwa M. S., van der Klei H., Yamamoto T., Schipper B., Vlak J. M., Stiekema W. J., Bosch D. Domain III substitution in Bacillus thuringiensis delta-endotoxin CryIA(b) results in superior toxicity for Spodoptera exigua and altered membrane protein recognition. Appl Environ Microbiol. 1996 May;62(5):1537–1543. doi: 10.1128/aem.62.5.1537-1543.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES