Abstract
We compared responses to six insecticidal crystal proteins from Bacillus thuringiensis by a Cry1A-resistant strain (NO-QA) and a susceptible strain (LAB-P) of the diamondback moth, Plutella xylostella. The resistant strain showed > 100-fold cross-resistance to Cry1J and to H04, a hybrid with domains I and II of Cry1Ab and domain III or Cry1C. Cross-resistance was sixfold to Cry1Bb and threefold to Cry1D. The potency of Cry1I did not differ significantly between the resistant and susceptible strains. Cry2B did not kill resistant or susceptible larvae. By combining these new data with previously published results, we classified responses to 14 insecticidal crystal proteins by strains NO-QA and LAB-P. NO-QA showed high levels of resistance to Cry1Aa, Cry1Ab, and Cry1Ac and high levels of cross-resistance to Cry1F, Cry1J, and H04. Cross-resistance was low or nil to Cry1Ba, Cry1Bb, Cry1C, Cry1D, Cry1I, and Cry2A. Cry1E and Cry2B showed little or no toxicity to susceptible or resistant larvae. In dendrograms based on levels of amino acid sequence similarity among proteins, Cry1F and Cry1J clustered together with Cry1A proteins for domain II, but not for domain I or III. High levels of cross-resistance to Cry1Ab-Cry1C hybrid H04 show that although Cry1C is toxic to NO-QA, domain III or Cry1C is not sufficient to restore toxicity when it is combined with domains I and II of Cry1Ab. Thus, diamondback moth strain NO-QA cross-resistance extends beyond the Cry1A family of proteins to at least two other families that exhibit high levels of amino sequence similarity with Cry1A in domain II (Cry1F and Cry1J) and to a protein that is identical to Cry1Ab in domain II (H04). The results of this study imply that resistance to Cry1A alters interactions between the insect and domain II.
Full Text
The Full Text of this article is available as a PDF (237.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baum J. A., Coyle D. M., Gilbert M. P., Jany C. S., Gawron-Burke C. Novel cloning vectors for Bacillus thuringiensis. Appl Environ Microbiol. 1990 Nov;56(11):3420–3428. doi: 10.1128/aem.56.11.3420-3428.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bosch D., Schipper B., van der Kleij H., de Maagd R. A., Stiekema W. J. Recombinant Bacillus thuringiensis crystal proteins with new properties: possibilities for resistance management. Biotechnology (N Y) 1994 Sep;12(9):915–918. doi: 10.1038/nbt0994-915. [DOI] [PubMed] [Google Scholar]
- Dankocsik C., Donovan W. P., Jany C. S. Activation of a cryptic crystal protein gene of Bacillus thuringiensis subspecies kurstaki by gene fusion and determination of the crystal protein insecticidal specificity. Mol Microbiol. 1990 Dec;4(12):2087–2094. doi: 10.1111/j.1365-2958.1990.tb00569.x. [DOI] [PubMed] [Google Scholar]
- Escriche B., Tabashnik B., Finson N., Ferré J. Immunohistochemical detection of binding of CryIA crystal proteins of Bacillus thuringiensis in highly resistant strains of Plutella xylostella (L.) from Hawaii. Biochem Biophys Res Commun. 1995 Jul 17;212(2):388–395. doi: 10.1006/bbrc.1995.1982. [DOI] [PubMed] [Google Scholar]
- Ferré J., Real M. D., Van Rie J., Jansens S., Peferoen M. Resistance to the Bacillus thuringiensis bioinsecticide in a field population of Plutella xylostella is due to a change in a midgut membrane receptor. Proc Natl Acad Sci U S A. 1991 Jun 15;88(12):5119–5123. doi: 10.1073/pnas.88.12.5119. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ge A. Z., Rivers D., Milne R., Dean D. H. Functional domains of Bacillus thuringiensis insecticidal crystal proteins. Refinement of Heliothis virescens and Trichoplusia ni specificity domains on CryIA(c). J Biol Chem. 1991 Sep 25;266(27):17954–17958. [PubMed] [Google Scholar]
- Ge A. Z., Shivarova N. I., Dean D. H. Location of the Bombyx mori specificity domain on a Bacillus thuringiensis delta-endotoxin protein. Proc Natl Acad Sci U S A. 1989 Jun;86(11):4037–4041. doi: 10.1073/pnas.86.11.4037. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gould F., Martinez-Ramirez A., Anderson A., Ferre J., Silva F. J., Moar W. J. Broad-spectrum resistance to Bacillus thuringiensis toxins in Heliothis virescens. Proc Natl Acad Sci U S A. 1992 Sep 1;89(17):7986–7990. doi: 10.1073/pnas.89.17.7986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grochulski P., Masson L., Borisova S., Pusztai-Carey M., Schwartz J. L., Brousseau R., Cygler M. Bacillus thuringiensis CryIA(a) insecticidal toxin: crystal structure and channel formation. J Mol Biol. 1995 Dec 1;254(3):447–464. doi: 10.1006/jmbi.1995.0630. [DOI] [PubMed] [Google Scholar]
- Lambert B., Buysse L., Decock C., Jansens S., Piens C., Saey B., Seurinck J., Van Audenhove K., Van Rie J., Van Vliet A. A Bacillus thuringiensis insecticidal crystal protein with a high activity against members of the family Noctuidae. Appl Environ Microbiol. 1996 Jan;62(1):80–86. doi: 10.1128/aem.62.1.80-86.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee M. K., Rajamohan F., Gould F., Dean D. H. Resistance to Bacillus thuringiensis CryIA delta-endotoxins in a laboratory-selected Heliothis virescens strain is related to receptor alteration. Appl Environ Microbiol. 1995 Nov;61(11):3836–3842. doi: 10.1128/aem.61.11.3836-3842.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee M. K., Young B. A., Dean D. H. Domain III exchanges of Bacillus thuringiensis CryIA toxins affect binding to different gypsy moth midgut receptors. Biochem Biophys Res Commun. 1995 Nov 2;216(1):306–312. doi: 10.1006/bbrc.1995.2625. [DOI] [PubMed] [Google Scholar]
- Li J. D., Carroll J., Ellar D. J. Crystal structure of insecticidal delta-endotoxin from Bacillus thuringiensis at 2.5 A resolution. Nature. 1991 Oct 31;353(6347):815–821. doi: 10.1038/353815a0. [DOI] [PubMed] [Google Scholar]
- Lu H., Rajamohan F., Dean D. H. Identification of amino acid residues of Bacillus thuringiensis delta-endotoxin CryIAa associated with membrane binding and toxicity to Bombyx mori. J Bacteriol. 1994 Sep;176(17):5554–5559. doi: 10.1128/jb.176.17.5554-5559.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Masson L., Lu Y. J., Mazza A., Brousseau R., Adang M. J. The CryIA(c) receptor purified from Manduca sexta displays multiple specificities. J Biol Chem. 1995 Sep 1;270(35):20309–20315. doi: 10.1074/jbc.270.35.20309. [DOI] [PubMed] [Google Scholar]
- Masson L., Mazza A., Brousseau R., Tabashnik B. Kinetics of Bacillus thuringiensis toxin binding with brush border membrane vesicles from susceptible and resistant larvae of Plutella xylostella. J Biol Chem. 1995 May 19;270(20):11887–11896. doi: 10.1074/jbc.270.20.11887. [DOI] [PubMed] [Google Scholar]
- Masson L., Mazza A., Gringorten L., Baines D., Aneliunas V., Brousseau R. Specificity domain localization of Bacillus thuringiensis insecticidal toxins is highly dependent on the bioassay system. Mol Microbiol. 1994 Dec;14(5):851–860. doi: 10.1111/j.1365-2958.1994.tb01321.x. [DOI] [PubMed] [Google Scholar]
- McGaughey W. H., Whalon M. E. Managing Insect Resistance to Bacillus thuringiensis Toxins. Science. 1992 Nov 27;258(5087):1451–1455. doi: 10.1126/science.258.5087.1451. [DOI] [PubMed] [Google Scholar]
- Moar W. J., Pusztai-Carey M., Van Faassen H., Bosch D., Frutos R., Rang C., Luo K., Adang M. J. Development of Bacillus thuringiensis CryIC Resistance by Spodoptera exigua (Hubner) (Lepidoptera: Noctuidae). Appl Environ Microbiol. 1995 Jun;61(6):2086–2092. doi: 10.1128/aem.61.6.2086-2092.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schnepf H. E., Tomczak K., Ortega J. P., Whiteley H. R. Specificity-determining regions of a lepidopteran-specific insecticidal protein produced by Bacillus thuringiensis. J Biol Chem. 1990 Dec 5;265(34):20923–20930. [PubMed] [Google Scholar]
- Shin B. S., Park S. H., Choi S. K., Koo B. T., Lee S. T., Kim J. I. Distribution of cryV-type insecticidal protein genes in Bacillus thuringiensis and cloning of cryV-type genes from Bacillus thuringiensis subsp. kurstaki and Bacillus thuringiensis subsp. entomocidus. Appl Environ Microbiol. 1995 Jun;61(6):2402–2407. doi: 10.1128/aem.61.6.2402-2407.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith G. P., Ellar D. J. Mutagenesis of two surface-exposed loops of the Bacillus thuringiensis CryIC delta-endotoxin affects insecticidal specificity. Biochem J. 1994 Sep 1;302(Pt 2):611–616. doi: 10.1042/bj3020611. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tabashnik B. E., Finson N., Groeters F. R., Moar W. J., Johnson M. W., Luo K., Adang M. J. Reversal of resistance to Bacillus thuringiensis in Plutella xylostella. Proc Natl Acad Sci U S A. 1994 May 10;91(10):4120–4124. doi: 10.1073/pnas.91.10.4120. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tabashnik B. E., Finson N., Johnson M. W., Heckel D. G. Cross-Resistance to Bacillus thuringiensis Toxin CryIF in the Diamondback Moth (Plutella xylostella). Appl Environ Microbiol. 1994 Dec;60(12):4627–4629. doi: 10.1128/aem.60.12.4627-4629.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tabashnik B. E., Finson N., Johnson M. W., Moar W. J. Resistance to Toxins from Bacillus thuringiensis subsp. kurstaki Causes Minimal Cross-Resistance to B. thuringiensis subsp. aizawai in the Diamondback Moth (Lepidoptera: Plutellidae). Appl Environ Microbiol. 1993 May;59(5):1332–1335. doi: 10.1128/aem.59.5.1332-1335.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tang J. D., Shelton A. M., Van Rie J., De Roeck S., Moar W. J., Roush R. T., Peferoen M. Toxicity of Bacillus thuringiensis Spore and Crystal Protein to Resistant Diamondback Moth (Plutella xylostella). Appl Environ Microbiol. 1996 Feb;62(2):564–569. doi: 10.1128/aem.62.2.564-569.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thompson M. A., Schnepf H. E., Feitelson J. S. Structure, function and engineering of Bacillus thuringiensis toxins. Genet Eng (N Y) 1995;17:99–117. [PubMed] [Google Scholar]
- Van Rie J., McGaughey W. H., Johnson D. E., Barnett B. D., Van Mellaert H. Mechanism of insect resistance to the microbial insecticide Bacillus thuringiensis. Science. 1990 Jan 5;247(4938):72–74. doi: 10.1126/science.2294593. [DOI] [PubMed] [Google Scholar]
- Von Tersch M. A., Robbins H. L., Jany C. S., Johnson T. B. Insecticidal toxins from Bacillus thuringiensis subsp. kenyae: gene cloning and characterization and comparison with B. thuringiensis subsp. kurstaki CryIA(c) toxins. Appl Environ Microbiol. 1991 Feb;57(2):349–358. doi: 10.1128/aem.57.2.349-358.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Widner W. R., Whiteley H. R. Two highly related insecticidal crystal proteins of Bacillus thuringiensis subsp. kurstaki possess different host range specificities. J Bacteriol. 1989 Feb;171(2):965–974. doi: 10.1128/jb.171.2.965-974.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wu S. J., Dean D. H. Functional significance of loops in the receptor binding domain of Bacillus thuringiensis CryIIIA delta-endotoxin. J Mol Biol. 1996 Feb 2;255(4):628–640. doi: 10.1006/jmbi.1996.0052. [DOI] [PubMed] [Google Scholar]
- de Maagd R. A., Kwa M. S., van der Klei H., Yamamoto T., Schipper B., Vlak J. M., Stiekema W. J., Bosch D. Domain III substitution in Bacillus thuringiensis delta-endotoxin CryIA(b) results in superior toxicity for Spodoptera exigua and altered membrane protein recognition. Appl Environ Microbiol. 1996 May;62(5):1537–1543. doi: 10.1128/aem.62.5.1537-1543.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]