Abstract
To produce two xylanases with Trichoderma reesei grown on glucose, recombinant strains which carry either the xyn1 or the xyn2 (xylanase I and II [XYN I and XYN II]-encoding) structural genes under the expression signals of the homologous pki1 (pyruvate kinase-encoding) gene were constructed. The two types of transformants secreted XYN I or II, respectively, during growth on glucose, as demonstrated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunostaining. The corresponding specific xylanase activities of the best transformants on glucose were 76 and 145 U/mg of protein for XYN I and XYN II, respectively, as opposed to that obtained by the parent strain (26 U/mg of protein). When related to the amount of biomass formed, however, they produced only about 4 to 5 U/g, in contrast to much higher activities (10 to 12 U/g) during growth on xylan. The ultrastructural location of XYN II in the transformant strain producing the highest constitutive XYN II formation (ATX2-12) was investigated by immunoelectron microscopy and compared with that in the wild-type strain growing on xylan. Cell extracts from both types of transformants grown on glucose exhibited a higher intracellular xylanase activity than did the parent strain grown on xylan. By using electron microscopy and immunogold labelling, XYN II was detected in the endoplasmic reticulum, Golgi-like vesicles, secretory vesicles, vacuoles, and cell walls. The immunolabel in the vacuoles was detected preferentially in subapical cells. When a recombinant strain which expressed xyn2 from the pki1 promoter was compared with the parent strain during growth on xylan, the former exhibited a less proliferated endoplasmic reticulum and a smaller number of secretory vesicles; however, a higher density of labelling was observed. The relationship of these findings to the efficacy of protein secretion during growth on glucose is discussed.
Full Text
The Full Text of this article is available as a PDF (1.3 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Archer D. B., Jeenes D. J., Mackenzie D. A. Strategies for improving heterologous protein production from filamentous fungi. Antonie Van Leeuwenhoek. 1994;65(3):245–250. doi: 10.1007/BF00871952. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Cleves A. E., Bankaitis V. A. Secretory pathway function in Saccharomyces cerevisiae. Adv Microb Physiol. 1992;33:73–144. doi: 10.1016/s0065-2911(08)60216-7. [DOI] [PubMed] [Google Scholar]
- Gellissen G., Melber K., Janowicz Z. A., Dahlems U. M., Weydemann U., Piontek M., Strasser A. W., Hollenberg C. P. Heterologous protein production in yeast. Antonie Van Leeuwenhoek. 1992 Aug;62(1-2):79–93. doi: 10.1007/BF00584464. [DOI] [PubMed] [Google Scholar]
- Glenn M., Ghosh A., Ghosh B. K. Subcellular fractionation of a hypercellulolytic mutant, Trichoderma reesei Rut-C30: localization of endoglucanase in microsomal fraction. Appl Environ Microbiol. 1985 Nov;50(5):1137–1143. doi: 10.1128/aem.50.5.1137-1143.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gruber F., Visser J., Kubicek C. P., de Graaff L. H. The development of a heterologous transformation system for the cellulolytic fungus Trichoderma reesei based on a pyrG-negative mutant strain. Curr Genet. 1990 Jul;18(1):71–76. doi: 10.1007/BF00321118. [DOI] [PubMed] [Google Scholar]
- Jeenes D. J., Mackenzie D. A., Archer D. B. Transcriptional and post-transcriptional events affect the production of secreted hen egg white lysozyme by Aspergillus niger. Transgenic Res. 1994 Sep;3(5):297–303. doi: 10.1007/BF01973589. [DOI] [PubMed] [Google Scholar]
- Kubicek C. P., Messner R., Gruber F., Mach R. L., Kubicek-Pranz E. M. The Trichoderma cellulase regulatory puzzle: from the interior life of a secretory fungus. Enzyme Microb Technol. 1993 Feb;15(2):90–99. doi: 10.1016/0141-0229(93)90030-6. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- MacKenzie D. A., Jeenes D. J., Belshaw N. J., Archer D. B. Regulation of secreted protein production by filamentous fungi: recent developments and perspectives. J Gen Microbiol. 1993 Oct;139(10):2295–2307. doi: 10.1099/00221287-139-10-2295. [DOI] [PubMed] [Google Scholar]
- Mach R. L., Schindler M., Kubicek C. P. Transformation of Trichoderma reesei based on hygromycin B resistance using homologous expression signals. Curr Genet. 1994 Jun;25(6):567–570. doi: 10.1007/BF00351679. [DOI] [PubMed] [Google Scholar]
- Mayfield M. B., Kishi K., Alic M., Gold M. H. Homologous expression of recombinant manganese peroxidase in Phanerochaete chrysosporium. Appl Environ Microbiol. 1994 Dec;60(12):4303–4309. doi: 10.1128/aem.60.12.4303-4309.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Punt P. J., Zegers N. D., Busscher M., Pouwels P. H., van den Hondel C. A. Intracellular and extracellular production of proteins in Aspergillus under the control of expression signals of the highly expressed Aspergillus nidulans gpdA gene. J Biotechnol. 1991 Jan;17(1):19–33. doi: 10.1016/0168-1656(91)90024-p. [DOI] [PubMed] [Google Scholar]
- Royer John C., Nakas J. P. Interrelationship of Xylanase Induction and Cellulase Induction of Trichoderma longibrachiatum. Appl Environ Microbiol. 1990 Aug;56(8):2535–2539. doi: 10.1128/aem.56.8.2535-2539.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schindler M., Mach R. L., Vollenhofer S. K., Hodits R., Gruber F., Visser J., De Graaff L., Kubicek C. P. Characterization of the pyruvate kinase-encoding gene (pki1) of Trichoderma reesei. Gene. 1993 Aug 25;130(2):271–275. doi: 10.1016/0378-1119(93)90430-b. [DOI] [PubMed] [Google Scholar]
- Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Törrönen A., Mach R. L., Messner R., Gonzalez R., Kalkkinen N., Harkki A., Kubicek C. P. The two major xylanases from Trichoderma reesei: characterization of both enzymes and genes. Biotechnology (N Y) 1992 Nov;10(11):1461–1465. doi: 10.1038/nbt1192-1461. [DOI] [PubMed] [Google Scholar]
- Yanisch-Perron C., Vieira J., Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. doi: 10.1016/0378-1119(85)90120-9. [DOI] [PubMed] [Google Scholar]
- van den Hondel C. A., Punt P. J., van Gorcom R. F. Production of extracellular proteins by the filamentous fungus Aspergillus. Antonie Van Leeuwenhoek. 1992 Feb;61(2):153–160. doi: 10.1007/BF00580623. [DOI] [PubMed] [Google Scholar]
