Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1996 Aug;62(8):2888–2896. doi: 10.1128/aem.62.8.2888-2896.1996

Comparative analysis of nitrifying bacteria associated with freshwater and marine aquaria.

T A Hovanec 1, E F DeLong 1
PMCID: PMC168074  PMID: 8702281

Abstract

Three nucleic acid probes, two for autotrophic ammonia-oxidizing bacteria of the beta subdivision of the class Proteobacteria and one for alpha subdivision nitrite-oxidizing bacteria, were developed and used to study nitrifying bacterial phylotypes associated with various freshwater and seawater aquarium biofilters. Nitrosomonas europaea and related species were detected in all nitrifying seawater systems and accounted for as much as 20% of the total eubacterial rRNA. In contrast, nitrifying bacteria belonging to the beta-proteobacterial subdivision were detected in only two samples from freshwater aquaria showing vigorous nitrification rates. rRNA originating from nitrite-oxidizing alpha subdivision proteobacteria was not detected in samples from either aquarium environment. The data obtained indicate that chemolithotrophic ammonia oxidation in the freshwater aquaria was not due to beta-proteobacterial phylotypes related to members of the genus Nitrosomonas and their close relatives, the organisms usually implicated in freshwater nitrification. It is likely that nitrification in natural environments is even more complex than nitrification in these simple systems and is less well characterized with regard to the microorganisms responsible.

Full Text

The Full Text of this article is available as a PDF (444.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amann R. I., Ludwig W., Schleifer K. H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev. 1995 Mar;59(1):143–169. doi: 10.1128/mr.59.1.143-169.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Belser L. W., Schmidt E. L. Diversity in the ammonia-oxidizing nitrifier population of a soil. Appl Environ Microbiol. 1978 Oct;36(4):584–588. doi: 10.1128/aem.36.4.584-588.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Castignetti D., Hollocher T. C. Heterotrophic nitrification among denitrifiers. Appl Environ Microbiol. 1984 Apr;47(4):620–623. doi: 10.1128/aem.47.4.620-623.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. DeLong E. F. Archaea in coastal marine environments. Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5685–5689. doi: 10.1073/pnas.89.12.5685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Degrange V., Bardin R. Detection and counting of Nitrobacter populations in soil by PCR. Appl Environ Microbiol. 1995 Jun;61(6):2093–2098. doi: 10.1128/aem.61.6.2093-2098.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ehrich S., Behrens D., Lebedeva E., Ludwig W., Bock E. A new obligately chemolithoautotrophic, nitrite-oxidizing bacterium, Nitrospira moscoviensis sp. nov. and its phylogenetic relationship. Arch Microbiol. 1995 Jul;164(1):16–23. doi: 10.1007/BF02568729. [DOI] [PubMed] [Google Scholar]
  7. Giovannoni S. J., DeLong E. F., Olsen G. J., Pace N. R. Phylogenetic group-specific oligodeoxynucleotide probes for identification of single microbial cells. J Bacteriol. 1988 Feb;170(2):720–726. doi: 10.1128/jb.170.2.720-726.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Head I. M., Hiorns W. D., Embley T. M., McCarthy A. J., Saunders J. R. The phylogeny of autotrophic ammonia-oxidizing bacteria as determined by analysis of 16S ribosomal RNA gene sequences. J Gen Microbiol. 1993 Jun;139(Pt 6):1147–1153. doi: 10.1099/00221287-139-6-1147. [DOI] [PubMed] [Google Scholar]
  9. Hiorns W. D., Hastings R. C., Head I. M., McCarthy A. J., Saunders J. R., Pickup R. W., Hall G. H. Amplification of 16S ribosomal RNA genes of autotrophic ammonia-oxidizing bacteria demonstrates the ubiquity of nitrosospiras in the environment. Microbiology. 1995 Nov;141(Pt 11):2793–2800. doi: 10.1099/13500872-141-11-2793. [DOI] [PubMed] [Google Scholar]
  10. Johnson P. W., Sieburth J. M. In situ morphology of nitrifying-like bacteria in aquaculture systems. Appl Environ Microbiol. 1976 Mar;31(3):423–432. doi: 10.1128/aem.31.3.423-432.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Maidak B. L., Larsen N., McCaughey M. J., Overbeek R., Olsen G. J., Fogel K., Blandy J., Woese C. R. The Ribosomal Database Project. Nucleic Acids Res. 1994 Sep;22(17):3485–3487. doi: 10.1093/nar/22.17.3485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. McCaig A. E., Embley T. M., Prosser J. I. Molecular analysis of enrichment cultures of marine ammonia oxidisers. FEMS Microbiol Lett. 1994 Jul 15;120(3):363–367. doi: 10.1111/j.1574-6968.1994.tb07059.x. [DOI] [PubMed] [Google Scholar]
  13. Nejidat A., Abeliovich A. Detection of Nitrosomonas spp. by polymerase chain reaction. FEMS Microbiol Lett. 1994 Jul 1;120(1-2):191–194. doi: 10.1111/j.1574-6968.1994.tb07029.x. [DOI] [PubMed] [Google Scholar]
  14. Orso S., Gouy M., Navarro E., Normand P. Molecular phylogenetic analysis of Nitrobacter spp. Int J Syst Bacteriol. 1994 Jan;44(1):83–86. doi: 10.1099/00207713-44-1-83. [DOI] [PubMed] [Google Scholar]
  15. Prosser J. I. Autotrophic nitrification in bacteria. Adv Microb Physiol. 1989;30:125–181. doi: 10.1016/s0065-2911(08)60112-5. [DOI] [PubMed] [Google Scholar]
  16. Schimel J. P., Firestone M. K., Killham K. S. Identification of heterotrophic nitrification in a sierran forest soil. Appl Environ Microbiol. 1984 Oct;48(4):802–806. doi: 10.1128/aem.48.4.802-806.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Stahl D. A., Flesher B., Mansfield H. R., Montgomery L. Use of phylogenetically based hybridization probes for studies of ruminal microbial ecology. Appl Environ Microbiol. 1988 May;54(5):1079–1084. doi: 10.1128/aem.54.5.1079-1084.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Tate R. L., 3rd Nitrification in histosols: a potential role for the heterotrophic nitrifier. Appl Environ Microbiol. 1977 Apr;33(4):911–914. doi: 10.1128/aem.33.4.911-914.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Teske A., Alm E., Regan J. M., Toze S., Rittmann B. E., Stahl D. A. Evolutionary relationships among ammonia- and nitrite-oxidizing bacteria. J Bacteriol. 1994 Nov;176(21):6623–6630. doi: 10.1128/jb.176.21.6623-6630.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Voytek M. A., Ward B. B. Detection of ammonium-oxidizing bacteria of the beta-subclass of the class Proteobacteria in aquatic samples with the PCR. Appl Environ Microbiol. 1995 Apr;61(4):1444–1450. doi: 10.1128/aem.61.4.1444-1450.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Wagner M., Amann R., Lemmer H., Schleifer K. H. Probing activated sludge with oligonucleotides specific for proteobacteria: inadequacy of culture-dependent methods for describing microbial community structure. Appl Environ Microbiol. 1993 May;59(5):1520–1525. doi: 10.1128/aem.59.5.1520-1525.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Woese C. R. Bacterial evolution. Microbiol Rev. 1987 Jun;51(2):221–271. doi: 10.1128/mr.51.2.221-271.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES