Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1996 Aug;62(8):2915–2918. doi: 10.1128/aem.62.8.2915-2918.1996

The glucose transport system of the hyperthermophilic anaerobic bacterium Thermotoga neapolitana

MY Galperin 1, KM Noll 1, AH Romano 1
PMCID: PMC168078  PMID: 9285772

Abstract

The glucose transport system of the extremely thermophilic anaerobic bacterium Thermotoga neapolitana was studied with the nonmetabolizable glucose analog 2-deoxy-D-glucose (2-DOG). T. neapolitana accumulated 2-DOG against a concentration gradient in an intracellular free sugar pool that was exchangeable with external source of energy, such as pyruvate, and was inhibited by arsenate and gramicidin D. There was no phosphoenolpyruvate-dependent phosphorylation of glucose, 2-DOG, or fructose by cell extracts or toluene-treated cells, indicating the absence of a phosphoenolpyruvate:sugar phosphotransferase system. These data indicate that D-glucose is taken up by T. neapolitana via an active transport system that is energized by an ion gradient generated by ATP, derived from substrate-level phosphorylation.

Full Text

The Full Text of this article is available as a PDF (194.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Achenbach-Richter L., Gupta R., Stetter K. O., Woese C. R. Were the original eubacteria thermophiles? Syst Appl Microbiol. 1987;9:34–39. doi: 10.1016/s0723-2020(87)80053-x. [DOI] [PubMed] [Google Scholar]
  2. Adams M. W. Biochemical diversity among sulfur-dependent, hyperthermophilic microorganisms. FEMS Microbiol Rev. 1994 Oct;15(2-3):261–277. doi: 10.1111/j.1574-6976.1994.tb00139.x. [DOI] [PubMed] [Google Scholar]
  3. Childers S. E., Vargas M., Noll K. M. Improved Methods for Cultivation of the Extremely Thermophilic Bacterium Thermotoga neapolitana. Appl Environ Microbiol. 1992 Dec;58(12):3949–3953. doi: 10.1128/aem.58.12.3949-3953.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cook G. M., Janssen P. H., Morgan H. W. Uncoupler-Resistant Glucose Uptake by the Thermophilic Glycolytic Anaerobe Thermoanaerobacter thermosulfuricus (Clostridium thermohydrosulfuricum). Appl Environ Microbiol. 1993 Sep;59(9):2984–2990. doi: 10.1128/aem.59.9.2984-2990.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. De Rosa M., Gambacorta A., Gliozzi A. Structure, biosynthesis, and physicochemical properties of archaebacterial lipids. Microbiol Rev. 1986 Mar;50(1):70–80. doi: 10.1128/mr.50.1.70-80.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Elferink M. G., de Wit J. G., Driessen A. J., Konings W. N. Stability and proton-permeability of liposomes composed of archaeal tetraether lipids. Biochim Biophys Acta. 1994 Aug 3;1193(2):247–254. doi: 10.1016/0005-2736(94)90160-0. [DOI] [PubMed] [Google Scholar]
  7. Gilles A. M., Glaser P., Perrier V., Meier A., Longin R., Sebald M., Maignan L., Pistotnik E., Bârzu O. Zinc, a structural component of adenylate kinases from gram-positive bacteria. J Bacteriol. 1994 Jan;176(2):520–523. doi: 10.1128/jb.176.2.520-523.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Heyne R. I., de Vrij W., Crielaard W., Konings W. N. Sodium ion-dependent amino acid transport in membrane vesicles of Bacillus stearothermophilus. J Bacteriol. 1991 Jan;173(2):791–800. doi: 10.1128/jb.173.2.791-800.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kashket E. R. Proton motive force in growing Streptococcus lactis and Staphylococcus aureus cells under aerobic and anaerobic conditions. J Bacteriol. 1981 Apr;146(1):369–376. doi: 10.1128/jb.146.1.369-376.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kengen S. W., de Bok F. A., van Loo N. D., Dijkema C., Stams A. J., de Vos W. M. Evidence for the operation of a novel Embden-Meyerhof pathway that involves ADP-dependent kinases during sugar fermentation by Pyrococcus furiosus. J Biol Chem. 1994 Jul 1;269(26):17537–17541. [PubMed] [Google Scholar]
  11. Kornberg H. L., Reeves R. E. Inducible phosphoenolpyruvate-dependent hexose phosphotransferase activities in Escherichia coli. Biochem J. 1972 Aug;128(5):1339–1344. doi: 10.1042/bj1281339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  13. Lolkema J. S., Speelmans G., Konings W. N. Na(+)-coupled versus H(+)-coupled energy transduction in bacteria. Biochim Biophys Acta. 1994 Aug 30;1187(2):211–215. doi: 10.1016/0005-2728(94)90113-9. [DOI] [PubMed] [Google Scholar]
  14. Romano A. H., Brino G., Peterkofsky A., Reizer J. Regulation of beta-galactoside transport and accumulation in heterofermentative lactic acid bacteria. J Bacteriol. 1987 Dec;169(12):5589–5596. doi: 10.1128/jb.169.12.5589-5596.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Skulachev V. P. Bacterial Na+ energetics. FEBS Lett. 1989 Jun 19;250(1):106–114. doi: 10.1016/0014-5793(89)80693-3. [DOI] [PubMed] [Google Scholar]
  16. Speelmans G., Poolman B., Abee T., Konings W. N. Energy transduction in the thermophilic anaerobic bacterium Clostridium fervidus is exclusively coupled to sodium ions. Proc Natl Acad Sci U S A. 1993 Sep 1;90(17):7975–7979. doi: 10.1073/pnas.90.17.7975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Speelmans G., Poolman B., Konings W. N. Amino acid transport in the thermophilic anaerobe Clostridium fervidus is driven by an electrochemical sodium gradient. J Bacteriol. 1993 Apr;175(7):2060–2066. doi: 10.1128/jb.175.7.2060-2066.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Wilson T. H., Lin E. C. Evolution of membrane bioenergetics. J Supramol Struct. 1980;13(4):421–446. doi: 10.1002/jss.400130403. [DOI] [PubMed] [Google Scholar]
  19. Woese C. R. Bacterial evolution. Microbiol Rev. 1987 Jun;51(2):221–271. doi: 10.1128/mr.51.2.221-271.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES