Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1996 Aug;62(8):2961–2965. doi: 10.1128/aem.62.8.2961-2965.1996

Distribution of class II transposase and resolvase genes in soil bacteria and their association with mer genes.

A J Pearson 1, K D Bruce 1, A M Osborn 1, D A Ritchie 1, P Strike 1
PMCID: PMC168083  PMID: 8702289

Abstract

Southern hybridization was performed on 30 gram-negative, mercury-resistant soil bacteria isolated from three terrestrail sites in Great Britain; two of these sites were mercury polluted (SO and SE), and one was pristine (SB). Most of the isolates (20 of 30) hybridized to probes encoding regions of the transposase (tnpA) and resolvase (tnpR) genes from Tn501 and Tn21. Isolates SE9 and SB3 hybridized to the Tn21 but not the Tn501 tnpA probe; however, they differed in that SB3 hybridized to both Tn501 and Tn21 tnpR probes while SE9 did not hybridize to either tnpR probe. The remaining isolates (7 of 30) did not hybridize to any of the transposon gene probes under the conditions used. tnpA and tnpR regions were PCR amplified from most of the hybridizing isolates and from Tn501 and Tn21, and variation was assessed by restriction fragment length polymorphism analysis. On the basis of these data, tnpA regions were divided into eight restriction fragment length polymorphism classes and tnpR regions were divided into five classes. Similarity coefficients were calculated between classes and used to construct dendrograms showing percent similarity. A compilation of the data from this study on tnpA and tnpR regions and a previous study on merRT delta P regions (A. M. Osborn, K. D. Bruce, P. Strike, and D. A. Ritchie, Appl. Environ. Microbiol. 59:4024-4030, 1993) indicates the presence of hybrid transposons and provides evidence for extensive recombination, both between transposon genes and between transposon and mer genes, within these natural populations of bacteria.

Full Text

The Full Text of this article is available as a PDF (220.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barrineau P., Gilbert P., Jackson W. J., Jones C. S., Summers A. O., Wisdom S. The DNA sequence of the mercury resistance operon of the IncFII plasmid NR1. J Mol Appl Genet. 1984;2(6):601–619. [PubMed] [Google Scholar]
  2. Birnboim H. C., Doly J. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 1979 Nov 24;7(6):1513–1523. doi: 10.1093/nar/7.6.1513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bissonnette L., Roy P. H. Characterization of In0 of Pseudomonas aeruginosa plasmid pVS1, an ancestor of integrons of multiresistance plasmids and transposons of gram-negative bacteria. J Bacteriol. 1992 Feb;174(4):1248–1257. doi: 10.1128/jb.174.4.1248-1257.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brown N. L., Ford S. J., Pridmore R. D., Fritzinger D. C. Nucleotide sequence of a gene from the Pseudomonas transposon Tn501 encoding mercuric reductase. Biochemistry. 1983 Aug 16;22(17):4089–4095. doi: 10.1021/bi00286a015. [DOI] [PubMed] [Google Scholar]
  5. Bruce K. D., Osborn A. M., Pearson A. J., Strike P., Ritchie D. A. Genetic diversity within mer genes directly amplified from communities of noncultivated soil and sediment bacteria. Mol Ecol. 1995 Oct;4(5):605–612. doi: 10.1111/j.1365-294x.1995.tb00260.x. [DOI] [PubMed] [Google Scholar]
  6. Dahlberg C., Hermansson M. Abundance of Tn3, Tn21, and Tn501 transposase (tnpA) sequences in bacterial community DNA from marine environments. Appl Environ Microbiol. 1995 Aug;61(8):3051–3056. doi: 10.1128/aem.61.8.3051-3056.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Grindley N. D., Reed R. R. Transpositional recombination in prokaryotes. Annu Rev Biochem. 1985;54:863–896. doi: 10.1146/annurev.bi.54.070185.004243. [DOI] [PubMed] [Google Scholar]
  8. Grinsted J., de la Cruz F., Schmitt R. The Tn21 subgroup of bacterial transposable elements. Plasmid. 1990 Nov;24(3):163–189. doi: 10.1016/0147-619x(90)90001-s. [DOI] [PubMed] [Google Scholar]
  9. Hall R. M., Brookes D. E., Stokes H. W. Site-specific insertion of genes into integrons: role of the 59-base element and determination of the recombination cross-over point. Mol Microbiol. 1991 Aug;5(8):1941–1959. doi: 10.1111/j.1365-2958.1991.tb00817.x. [DOI] [PubMed] [Google Scholar]
  10. Kholodii G. Y., Gorlenko Z., Lomovskaya O. L., Mindlin S. Z., Yurieva O. V., Nikiforov V. G. Molecular characterization of an aberrant mercury resistance transposable element from an environmental Acinetobacter strain. Plasmid. 1993 Nov;30(3):303–308. doi: 10.1006/plas.1993.1064. [DOI] [PubMed] [Google Scholar]
  11. Lafond M., Couture F., Vézina G., Levesque R. C. Evolutionary perspectives on multiresistance beta-lactamase transposons. J Bacteriol. 1989 Dec;171(12):6423–6429. doi: 10.1128/jb.171.12.6423-6429.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lett M. C., Bennett P. M., Vidon D. J. Characterization of Tn3926, a new mercury-resistance transposon from Yersinia enterocolitica. Gene. 1985;40(1):79–91. doi: 10.1016/0378-1119(85)90026-5. [DOI] [PubMed] [Google Scholar]
  13. Misra T. K. Bacterial resistances to inorganic mercury salts and organomercurials. Plasmid. 1992 Jan;27(1):4–16. doi: 10.1016/0147-619x(92)90002-r. [DOI] [PubMed] [Google Scholar]
  14. Osborn A. M., Bruce K. D., Strike P., Ritchie D. A. Polymerase chain reaction-restriction fragment length polymorphism analysis shows divergence among mer determinants from gram-negative soil bacteria indistinguishable by DNA-DNA hybridization. Appl Environ Microbiol. 1993 Dec;59(12):4024–4030. doi: 10.1128/aem.59.12.4024-4030.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Osbourn S. E., Turner A. K., Grinsted J. Nucleotide sequence within Tn3926 confirms this as a Tn21-like transposable element and provides evidence for the origin of the mer operon carried by plasmid pKLH2. Plasmid. 1995 Jan;33(1):65–69. doi: 10.1006/plas.1995.1008. [DOI] [PubMed] [Google Scholar]
  16. Radford A. J., Oliver J., Kelly W. J., Reanney D. C. Translocatable resistance to mercuric and phenylmercuric ions in soil bacteria. J Bacteriol. 1981 Sep;147(3):1110–1112. doi: 10.1128/jb.147.3.1110-1112.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Salvi R. J., Ahroon W., Saunders S. S., Arnold S. A. Evoked potentials: computer-automated threshold-tracking procedure using an objective detection criterion. Ear Hear. 1987 Jun;8(3):151–156. [PubMed] [Google Scholar]
  18. Schmidt F. R., Nücken E. J., Henschke R. B. Structure and function of hot spots providing signals for site-directed specific recombination and gene expression in Tn21 transposons. Mol Microbiol. 1989 Nov;3(11):1545–1555. doi: 10.1111/j.1365-2958.1989.tb00140.x. [DOI] [PubMed] [Google Scholar]
  19. Schmidt F., Klopfer-Kaul I. Evolutionary relationship between Tn21-like elements and pBP201, a plasmid from Klebsiella pneumoniae mediating resistance to gentamicin and eight other drugs. Mol Gen Genet. 1984;197(1):109–119. doi: 10.1007/BF00327930. [DOI] [PubMed] [Google Scholar]
  20. Schmitt R., Bernhard E., Mattes R. Characterisation of Tn1721, a new transposon containing tetracycline resistance genes capable of amplification. Mol Gen Genet. 1979 Apr 17;172(1):53–65. doi: 10.1007/BF00276215. [DOI] [PubMed] [Google Scholar]
  21. Shiratori T., Inoue C., Sugawara K., Kusano T., Kitagawa Y. Cloning and expression of Thiobacillus ferrooxidans mercury ion resistance genes in Escherichia coli. J Bacteriol. 1989 Jun;171(6):3458–3464. doi: 10.1128/jb.171.6.3458-3464.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Silver S., Walderhaug M. Gene regulation of plasmid- and chromosome-determined inorganic ion transport in bacteria. Microbiol Rev. 1992 Mar;56(1):195–228. doi: 10.1128/mr.56.1.195-228.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Stokes H. W., Hall R. M. A novel family of potentially mobile DNA elements encoding site-specific gene-integration functions: integrons. Mol Microbiol. 1989 Dec;3(12):1669–1683. doi: 10.1111/j.1365-2958.1989.tb00153.x. [DOI] [PubMed] [Google Scholar]
  24. Tanaka M., Yamamoto T., Sawai T. Evolution of complex resistance transposons from an ancestral mercury transposon. J Bacteriol. 1983 Mar;153(3):1432–1438. doi: 10.1128/jb.153.3.1432-1438.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Zgur-Bertok D., Ambrozic J., Podlesek Z., Grabnar M. Tn5431, a new transposable element composed of Tn1721- and Tn3-like genes. Plasmid. 1994 Jul;32(1):95–99. doi: 10.1006/plas.1994.1050. [DOI] [PubMed] [Google Scholar]
  26. Zühlsdorf M. T., Wiedemann B. Tn21-specific structures in gram-negative bacteria from clinical isolates. Antimicrob Agents Chemother. 1992 Sep;36(9):1915–1921. doi: 10.1128/aac.36.9.1915. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES